OFFSET
1,1
COMMENTS
A subsequence of the numbers of the form a^3 + b^2, A055394.
Although it is easy to produce many terms of this sequence, it is nontrivial to check whether a very large number is of this form.
EXAMPLE
The first terms are 1^3 + 1^6 = 2, 2^3 + 1^6 = 9, 3^3 + 1^6 = 28, 4^3 + 1^6 = 65, 2^3 + 2^6 = 72, 3^3 + 2^6 = 91, 5^3 + 1^6 = 126, 4^3 + 2^6 = 128, ...
PROG
(PARI) is(n, k=3, m=6)=for(b=1, sqrtnint(n-1, m), ispower(n-b^m, k)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
A303373_vec(L=10^5, k=3, m=6, S=List())={for(a=1, sqrtnint(L-1, m), for(b=1, sqrtnint(L-a^m, k), listput(S, a^m+b^k))); Set(S)} \\ List of all terms up to limit L
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Apr 22 2018
STATUS
approved