login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202679
Numbers that are sums of two coprime positive cubes.
7
2, 9, 28, 35, 65, 91, 126, 133, 152, 189, 217, 341, 344, 351, 370, 407, 468, 513, 539, 559, 637, 730, 737, 793, 854, 855, 1001, 1027, 1072, 1241, 1332, 1339, 1343, 1358, 1395, 1456, 1547, 1674, 1729, 1843, 1853, 2060, 2071, 2198, 2205, 2224, 2261, 2322, 2331, 2413
OFFSET
1,1
COMMENTS
Not a subsequence of A020898: non-cubefree members of this sequence include 152, 189, 344, 351, 513, 1072. - Robert Israel, Mar 16 2016
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..10000
R. C. Baker, Sums of two relatively prime cubes, Acta Arithmetica 129(2007), 103-146.
Kevin A. Broughan, A computational approach to characterizing the sum of two cubes, Hamilton: University of Waikato, 2001, p. 9.
P. Erdős and K. Mahler, On the number of integers which can be represented by a binary form, J. London Math. Soc. 13 (1938), pp. 134-139. [alternate link]
P. Erdős, On the integers of the form x^k + y^k, J. London Math. Soc. 14 (1939), pp. 250-254.
FORMULA
Erdős & Mahler shows that a(n) < kn^(3/2) for some k. Erdős later gives an elementary proof. - Charles R Greathouse IV, Dec 05 2012
EXAMPLE
28 is in the sequence since 1^3 + 3^3 = 28 and (1, 3) = 1.
MAPLE
N:= 10000: # to get all terms <= N
S:= {2, seq(seq(x^3 + y^3, y = select(t -> igcd(t, x)=1, [$x+1 .. floor((N - x^3)^(1/3))])), x = 1 .. floor((N/2)^(1/3)))}:
sort(convert(S, list)); # Robert Israel, Mar 15 2016
MATHEMATICA
nn = 2500; Union[Flatten[Table[If[CoprimeQ[x, y] == True, x^3 + y^3, {}], {x, nn^(1/3)}, {y, x, (nn - x^3)^(1/3)}]]]
Select[Range@ 2500, Length[PowersRepresentations[#, 2, 3] /. {{0, _} -> Nothing, {a_, b_} /; ! CoprimeQ[a, b] -> Nothing}] > 0 &] (* Michael De Vlieger, Mar 15 2016 *)
PROG
(PARI) is(n)=for(k=1, (n\2+.5)^(1/3), if(gcd(k, n)==1&&ispower(n-k^3, 3), return(1))); 0 \\ Charles R Greathouse IV, Apr 13 2012
(PARI) list(lim)=my(v=List()); forstep(x=1, lim^(1/3), 2, forstep(y=2, (lim-x^3+.5)^(1/3), 2, if(gcd(x, y)==1, listput(v, x^3+y^3))); forstep(y=1, min((lim-x^3+.5)^(1/3), x), 2, if(gcd(x, y)==1, listput(v, x^3+y^3)))); vecsort(Vec(v), , 8) \\ Charles R Greathouse IV, Dec 05 2012
CROSSREFS
Subsequence of A003325.
Sequence in context: A357721 A155472 A100293 * A340049 A256467 A303373
KEYWORD
nonn
AUTHOR
STATUS
approved