OFFSET
1,1
COMMENTS
In view of computing A300566, it would be interesting to have an efficient way to check whether a given (large) n is in this sequence. - M. F. Hasler, Apr 25 2018
MATHEMATICA
lst={}; Do[p=a^5+b^4; If[p<15000, AppendTo[lst, p]], {a, 16}, {b, 32}]; Union[lst]
PROG
(PARI) A100294_vec(L=10^6, k=4, m=5, S=List())={for(a=1, sqrtnint(L-1, m), for(b=1, sqrtnint(L-a^m, k), listput(S, a^m+b^k))); Set(S)} \\ all terms up to limit L. - M. F. Hasler, Apr 25 2018
(PARI) is(n, k=4, m=5)=for(a=1, sqrtnint(n-1, m), ispower(n-a^m, k) && return(a)) \\ Returns a > 0 if n is in the sequence, or 0 otherwise. - M. F. Hasler, Apr 25 2018
CROSSREFS
Cf. A100274 (primes of the form a^5 + b^4).
Subsequence of A100292 (a^5 + b^2); see also A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100293 (a^5 + b^3), A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6).
KEYWORD
nonn
AUTHOR
T. D. Noe, Nov 18 2004
STATUS
approved