login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A300566 Numbers z such that there is a solution to x^4 + y^5 = z^6 with x, y, z >= 1. 9
8748, 10368, 342732 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Also in the sequence: 810000 = 2^4*3^4*5^4, 1361367 = 3^4*7^5, 3240000 = 2^6*3^4*5^4, 9335088 = 2^4*3^5*7^4, 25312500 = 2^2*3^4*5^7, 31505922 = 2*3^8*7^4, 43740000 = 2^5*3^7*5^4, 512578125 = 3^8*5^7, 1215000000 = 2^6*3^5*5^7, 1701708750 = 2*3^4*5^4*7^5, 2196150000 = 2^4*3*5^5*11^4, 2431012500 = 2^2*3^4*5^5*7^4, 4269246912 = 2^6*3^4*7^7, 4447203750 = 2*3^5*5^4*11^4, 36015000000 = 2^6*3*5^7*7^4, 48717927500 = 2^2*5^4*11^7, 75969140625 = 3^4*5^8*7^4, 91116682272 = 2^5*3^4*7^4*11^4. - Jacques Tramu, Apr 17 2018

Consider a solution (x,y,z) of x^4 + y^5 = z^6. For any m, (x*m^15, y*m^12, z*m^10) is also a solution. Reciprocally, if (x/m^15, y/m^12, z/m^10) is a triple of integers for some m, then this is also a solution. We call primitive a solution for which there is no such m > 1. - M. F. Hasler, Apr 17 2018

Observation: a(n) = A054744(n+38) = A257999(n+32), at least for 1 <= n <= 2 in both cases. - Omar E. Pol, Apr 17 2018

These relations hold only for n = 1 and 2. The next larger known term 342732 = 2^2*3*13^4 shows that in general the terms don't belong to A054744 nor A257999, although the earlier comment implies that each term gives rise to infinitely many non-primitive terms in A054744. - M. F. Hasler, Apr 19 2018

When S = a^4 + b^10/4 is a square, then z = b^5/2 + sqrt(S) is a solution, with x = a*z and y = b*z. All known solutions and further solutions 8957952, 10616832, 52200625, 216486432, ... are of this form (with rational a, b). - M. F. Hasler, Apr 19 2018

LINKS

Table of n, a(n) for n=1..3.

EXAMPLE

a(1) = 8748 = 2^2*3^7 is in the sequence because 8748^6 = (2^3*3^8)^5 + (2^3*3^10)^4, using 2^3 + 1 = 3^2. Similarly, all z = 4*3^(10k-3) are in the sequence for k >= 1, with x = 8*3^(15k-5) and y = 8*3^(12k-4).

a(2) = 10368 = 2^7*3^4 is in the sequence because 10368^6 = (2^8*3^5)^5 + (2^10*3^6)^4, using 3 + 1 = 2^2. Similarly, any z = 2^7*3^(10k+4) is in the sequence for k >= 0, with x = 2^10*3^(15k+6) and y = 2^8*3^(12k+5).

z = 342732 = 2^2*3*13^4 is in the sequence because (2^2*3*13^4)^6 = (2^3*13^5)^5 + (2^3*5*13^6)^4, using 2^3*13 + 5^4 = 3^6.

z = 810000 = 2^4*3^4*5^4 is in the sequence because z^6 = x^4 + y^5 with x = 2^5*3^6*5^6 and y = 2^4*3^5*5^5 (using 1 + 3*5 = 2^4).

z = 1361367 = 3^4*7^5 is in the sequence because z^6 = x^4 + y^5 with x = 3^5*7^8 and y = 2*3^4*7^6.

PROG

(PARI) is(z)=for(y=1, sqrtnint(-1+z=z^6, 5), ispower(z-y^5, 4)&&return(y))

/* Code below for illustration only, not guaranteed to give a complete list. Half-integral values give the additional term 31505922 for b = 63/2. Third-integral values give the additional solution z = 342732 for b = 26/3. */

S=[]; N=1e5; forstep(b=1, 9, 1/3, forstep(a=1, N, 1/3, issquare(b^10+a^4<<2, &r)&& !frac(z=b^5/2+r/2)&& !print1(z", ")&&S=setunion(S, [z])); print1([b])); S

CROSSREFS

Cf. A300564 (z^4 = x^2 + y^3) and A242183, A300565 (z^5 = x^3 + y^4), A302174.

Cf. A100294: numbers of the form a^5 + b^4.

See A303266 for the y-values.

Sequence in context: A234707 A257748 A110077 * A203377 A183361 A269193

Adjacent sequences:  A300563 A300564 A300565 * A300567 A300568 A300569

KEYWORD

nonn,more,bref,hard

AUTHOR

M. F. Hasler, Apr 16 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 18:37 EST 2019. Contains 329865 sequences. (Running on oeis4.)