The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A300566 Numbers z such that there is a solution to x^4 + y^5 = z^6 with x, y, z >= 1. 9
 8748, 10368, 342732 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Also in the sequence: 810000 = 2^4*3^4*5^4, 1361367 = 3^4*7^5, 3240000 = 2^6*3^4*5^4, 9335088 = 2^4*3^5*7^4, 25312500 = 2^2*3^4*5^7, 31505922 = 2*3^8*7^4, 43740000 = 2^5*3^7*5^4, 512578125 = 3^8*5^7, 1215000000 = 2^6*3^5*5^7, 1701708750 = 2*3^4*5^4*7^5, 2196150000 = 2^4*3*5^5*11^4, 2431012500 = 2^2*3^4*5^5*7^4, 4269246912 = 2^6*3^4*7^7, 4447203750 = 2*3^5*5^4*11^4, 36015000000 = 2^6*3*5^7*7^4, 48717927500 = 2^2*5^4*11^7, 75969140625 = 3^4*5^8*7^4, 91116682272 = 2^5*3^4*7^4*11^4. - Jacques Tramu, Apr 17 2018 Consider a solution (x,y,z) of x^4 + y^5 = z^6. For any m, (x*m^15, y*m^12, z*m^10) is also a solution. Reciprocally, if (x/m^15, y/m^12, z/m^10) is a triple of integers for some m, then this is also a solution. We call primitive a solution for which there is no such m > 1. - M. F. Hasler, Apr 17 2018 Observation: a(n) = A054744(n+38) = A257999(n+32), at least for 1 <= n <= 2 in both cases. - Omar E. Pol, Apr 17 2018 These relations hold only for n = 1 and 2. The next larger known term 342732 = 2^2*3*13^4 shows that in general the terms don't belong to A054744 nor A257999, although the earlier comment implies that each term gives rise to infinitely many non-primitive terms in A054744. - M. F. Hasler, Apr 19 2018 When S = a^4 + b^10/4 is a square, then z = b^5/2 + sqrt(S) is a solution, with x = a*z and y = b*z. All known solutions and further solutions 8957952, 10616832, 52200625, 216486432, ... are of this form (with rational a, b). - M. F. Hasler, Apr 19 2018 LINKS Table of n, a(n) for n=1..3. EXAMPLE a(1) = 8748 = 2^2*3^7 is in the sequence because 8748^6 = (2^3*3^8)^5 + (2^3*3^10)^4, using 2^3 + 1 = 3^2. Similarly, all z = 4*3^(10k-3) are in the sequence for k >= 1, with x = 8*3^(15k-5) and y = 8*3^(12k-4). a(2) = 10368 = 2^7*3^4 is in the sequence because 10368^6 = (2^8*3^5)^5 + (2^10*3^6)^4, using 3 + 1 = 2^2. Similarly, any z = 2^7*3^(10k+4) is in the sequence for k >= 0, with x = 2^10*3^(15k+6) and y = 2^8*3^(12k+5). z = 342732 = 2^2*3*13^4 is in the sequence because (2^2*3*13^4)^6 = (2^3*13^5)^5 + (2^3*5*13^6)^4, using 2^3*13 + 5^4 = 3^6. z = 810000 = 2^4*3^4*5^4 is in the sequence because z^6 = x^4 + y^5 with x = 2^5*3^6*5^6 and y = 2^4*3^5*5^5 (using 1 + 3*5 = 2^4). z = 1361367 = 3^4*7^5 is in the sequence because z^6 = x^4 + y^5 with x = 3^5*7^8 and y = 2*3^4*7^6. PROG (PARI) is(z)=for(y=1, sqrtnint(-1+z=z^6, 5), ispower(z-y^5, 4)&&return(y)) /* Code below for illustration only, not guaranteed to give a complete list. Half-integral values give the additional term 31505922 for b = 63/2. Third-integral values give the additional solution z = 342732 for b = 26/3. */ S=[]; N=1e5; forstep(b=1, 9, 1/3, forstep(a=1, N, 1/3, issquare(b^10+a^4<<2, &r)&& !frac(z=b^5/2+r/2)&& !print1(z", ")&&S=setunion(S, [z])); print1([b])); S CROSSREFS Cf. A300564 (z^4 = x^2 + y^3) and A242183, A300565 (z^5 = x^3 + y^4), A302174. Cf. A100294: numbers of the form a^5 + b^4. See A303266 for the y-values. Sequence in context: A234707 A257748 A110077 * A203377 A183361 A269193 Adjacent sequences: A300563 A300564 A300565 * A300567 A300568 A300569 KEYWORD nonn,more,bref,hard AUTHOR M. F. Hasler, Apr 16 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 12:47 EDT 2024. Contains 372692 sequences. (Running on oeis4.)