login
A300564
Numbers z such that there is a solution to x^2 + y^3 = z^4 with x, y, z >= 1.
9
6, 9, 15, 35, 36, 42, 48, 57, 63, 71, 72, 75, 78, 90, 98, 100, 120, 135, 141, 147, 162, 195, 196, 204, 208, 215, 225, 243, 252, 260, 279, 280, 288, 289, 295, 300, 306, 336, 363, 364, 384, 405, 441, 450, 456, 462, 504, 510, 525, 537, 550, 568, 576, 600, 624, 630, 713, 720, 722, 735, 750, 784, 800, 819, 828, 841, 845, 847, 867, 875
OFFSET
1,1
FORMULA
Equals sequence A242183 with duplicates removed.
PROG
(PARI) is(z)=for(y=1, sqrtnint(z^4, 3), issquare(z^4-y^3, &x)&&x&&return(1))
CROSSREFS
Cf. A242183, A242192, A300565 (z^5 = x^3 + x^4), A300566 (z^6 = x^4 + y^5).
Sequence in context: A031209 A271826 A242183 * A316050 A272264 A316051
KEYWORD
nonn
AUTHOR
M. F. Hasler, Apr 16 2018
STATUS
approved