login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300567
Numbers z such that z^7 = x^5 + y^6 for some integers x, y >= 1.
7
8192, 7593750, 8605184
OFFSET
1,1
COMMENTS
Also in the sequence: 72900000 = 2^5*3^6*5^5, 51018336 = 2^5*3^13, 6083264512 = 2^14*13^5, 916132832 = 2^5*31^5, 6530347008 = 2^12*3^13, 16307453952 = 2^26*3^5, 233861123808 = 2^5*3^9*13^5, 850305600000 = 2^9*3^12*5^5.
Consider a solution (x,y,z) of x^5 + y^6 = z^7. For any m, (x*m^42, y*m^35, z*m^30) is also a solution. Reciprocally, if (x/m^42, y/m^35, z/m^30) is a triple of integers for some m, then this is also a solution. We call primitive a solution for which there is no such m > 1.
When S = a^5 + b^12/4 is a square, then z = b^6/2 + sqrt(S) is a solution, with x = a*z and y = b*z. All known solutions are of this form. Sequence A303267 lists the y-values, thus equal to b*z where z = a(n), with corresponding x = a*z = (a(n)^7 - A303267(n)^6)^(1/5).
EXAMPLE
a(1) = 8192 = 2^13 is in the sequence because (2^13)^7 = (2^18)^5 + (2^15)^6, using 18*5 = 15*6 = 90 = 13*7 - 1 and 1 + 1 = 2.
PROG
(PARI) is(z)=for(y=1, sqrtnint(-1+z=z^7, 6), ispower(z-y^6, 5)&&return(y))
/* Code below for illustration only, not guaranteed to give a complete list. */
S=[]; N=1e5; forstep(b=1, 99, 1/6, forstep(a=1, N, 1/6, issquare(b^12/4+a^5, &r)&& !frac(z=b^6/2+r)&& S=setunion(S, [z])); print1([b])); S
CROSSREFS
Cf. A300564 (z^4 = x^2 + y^3) and A242183, A300565 (z^5 = x^3 + y^4), A300566 (z^6 = x^4 + y^5), A302174.
See A303267 for the y-values.
Cf. A303375 (numbers of the form a^5 + b^6).
Sequence in context: A010801 A138031 A236221 * A323544 A230190 A017689
KEYWORD
nonn,more,bref,hard
AUTHOR
M. F. Hasler, Apr 16 2018
STATUS
approved