login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054744
p-full numbers: numbers such that if any prime p divides it, then so does p^p.
11
1, 4, 8, 16, 27, 32, 64, 81, 108, 128, 216, 243, 256, 324, 432, 512, 648, 729, 864, 972, 1024, 1296, 1728, 1944, 2048, 2187, 2592, 2916, 3125, 3456, 3888, 4096, 5184, 5832, 6561, 6912, 7776, 8192, 8748, 10368, 11664, 12500, 13824, 15552, 15625, 16384
OFFSET
1,2
COMMENTS
A027748(a(n),k) <= A124010(a(n),k), 1<=k<=A001221(a(n)). [Reinhard Zumkeller, Apr 28 2012]
Heinz numbers of integer partitions where the multiplicity of each part k is at least prime(k). These partitions are counted by A325132. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 02 2019
LINKS
FORMULA
If n = Product p_i^e_i then p_i<=e_i for all i.
Sum_{n>=1} 1/a(n) = Product_{p prime} 1 + 1/(p^(p-1)*(p-1)) = 1.58396891058853238595.... - Amiram Eldar, Oct 24 2020
EXAMPLE
8 is an element because 8 = 2^3 and 2<=3, while 25 is not an element because 25 = 5^2 and 5>2.
From Gus Wiseman, Apr 02 2019: (Start)
The sequence of terms together with their prime indices begins:
1: {}
4: {1,1}
8: {1,1,1}
16: {1,1,1,1}
27: {2,2,2}
32: {1,1,1,1,1}
64: {1,1,1,1,1,1}
81: {2,2,2,2}
108: {1,1,2,2,2}
128: {1,1,1,1,1,1,1}
216: {1,1,1,2,2,2}
243: {2,2,2,2,2}
256: {1,1,1,1,1,1,1,1}
324: {1,1,2,2,2,2}
432: {1,1,1,1,2,2,2}
512: {1,1,1,1,1,1,1,1,1}
648: {1,1,1,2,2,2,2}
729: {2,2,2,2,2,2}
864: {1,1,1,1,1,2,2,2}
972: {1,1,2,2,2,2,2}
(End)
MATHEMATICA
Select[Range[1000], And@@Cases[If[#==1, {}, FactorInteger[#]], {p_, k_}:>k>=p]&] (* Gus Wiseman, Apr 02 2019 *)
PROG
(Haskell)
a054744 n = a054744_list !! (n-1)
a054744_list = filter (\x -> and $
zipWith (<=) (a027748_row x) (map toInteger $ a124010_row x)) [1..]
-- Reinhard Zumkeller, Apr 28 2012
KEYWORD
easy,nonn
AUTHOR
James A. Sellers, Apr 22 2000
STATUS
approved