login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054747
Number of inequivalent n-state 2-input 2-output automata with respect to an input permutation.
3
3, 76, 4003, 352744, 41876694, 6217447912, 1106509486839, 229553329028386, 54393886281136386, 14493994916221695566, 4289933406949379595583, 1396384878753272032544946, 495758886710258565409900342, 190649910996342815795394676340, 78947451456044942567072721038672, 35023754187171124856459358053765838
OFFSET
1,1
REFERENCES
F. Harary and E. Palmer, Graphical Enumeration, 1973.
LINKS
Michael A. Harrison, A census of finite automata, Canad. J. Math., 17, No. 1, (1965), 100-113. [See Theorem 6.2 with k = p = 2 (p. 107) and Table IV (p. 112).]
PROG
(PARI) A054747(n)={local(p=vector(n)); local(q=matrix(2, 2)); q[1, 1] = 2; q[1, 2] = 0; q[2, 1]=0; q[2, 2]=1; my(S=0, A() = sum(j=1, 2, prod(r=1, n, prod(s=1, 2, (2*sumdiv(lcm(r, s), d, if(d < n+1, d*p[d], 0)))^(p[r]*q[j, s]*gcd(r, s)))))/2,
inc()=!forstep(i=n, 1, -1, p[i]<n\i && p[i]++ && return; p[i]=0), t); until(inc(), t=0; for( i=1, n, if( n < t+=i*p[i], until(i++>n, p[i]=n); next(2))); t==n && S+ = A()/prod(i=1, n, i^p[i]*p[i]!)); S} \\ This is a modification of M. F. Hasler's PARI program from A002854. - Petros Hadjicostas, Mar 08 2021
CROSSREFS
Euler transform of A000282.
Sequence in context: A201428 A141103 A300386 * A302375 A232030 A054950
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Apr 22 2000
EXTENSIONS
Terms a(14)-a(16) from Petros Hadjicostas, Mar 08 2021
STATUS
approved