login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054745
Number of nonisomorphic binary n-state automata without output under input permutations.
13
1, 1, 7, 74, 1474, 41876, 1540696, 68343112, 3540691525, 209612916303, 13957423192794, 1032436318269648, 83993175608894096, 7453446303042245261, 716451740543945788671, 74159075140708644544128, 8223831291824019614386868, 972718473204236819072891710
OFFSET
0,3
COMMENTS
Also isomorphism classes of unordered pairs of endofunctions i.e. an unorder pair {f,g} of functions from {1,...,n} to itself. - Christian G. Bower, Dec 18 2003
REFERENCES
F. Harary and E. Palmer, Graphical Enumeration, 1973.
LINKS
M. A. Harrison, A census of finite automata, Canad. J. Math., 17, No. 1, 1965, p. 110.
FORMULA
a(n) = sum {1*s_1+2*s_2+...=n, 1*t_1+2*t_2=2} (fixA[s_1, s_2, ...;t_1, t_2]/(1^s_1*s_1!*2^s_2*s_2!*...*1^t_1*t_1!*2^t_2*t_2!)) where fixA[...] = prod {i, j>=1} ( (sum {d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*t_j)). - Christian G. Bower, Dec 18 2003
MAPLE
with(numtheory):
b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
{seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
end:
a:= proc(n) option remember; add(add(mul(mul(add(coeff(s, x, d)
*d, d=divisors(ilcm(i, j)))^(igcd(i, j)*coeff(s, x, i)*
coeff(t, x, j)), j=1..degree(t)), i=1..degree(s))
/mul(i^coeff(t, x, i)*coeff(t, x, i)!, i=1..degree(t))
/mul(i^coeff(s, x, i)*coeff(s, x, i)!, i=1..degree(s))
, t=b(2$2)), s=b(n$2))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Aug 15 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, {0}, If[i<1, {}, Table[Map[Function[{p}, p + j*x^i], b[n - i*j, i-1]], {j, 0, n/i}] // Flatten // Union]];
a[n_] := a[n] = Sum[Sum[Product[Product[With[{g = GCD[i, j]*Coefficient[s, x, i]*Coefficient[t, x, j]}, If[g==0, 1, Sum[Coefficient[s, x, d]*d, {d, Divisors[LCM[i, j]]}]^g]], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/
Product[i^Coefficient[t, x, i]Coefficient[t, x, i]!, {i, Exponent[t, x]}]/
Product[i^Coefficient[s, x, i]Coefficient[s, x, i]!, {i, Exponent[s, x]}], {t, b[2, 2]}], {s, b[n, n]}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 16 2015, after Alois P. Heinz, updated Jan 01 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Apr 22 2000
EXTENSIONS
More terms from Alois P. Heinz, Aug 15 2014
STATUS
approved