login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098118
a(n) = n!*[x^n] (log(x+1) * Sum_{j=0..n} C(2*n,j)*x^j).
12
1, 7, 74, 1066, 19524, 434568, 11393808, 343976400, 11752855200, 448372820160, 18892607771520, 871406506494720, 43669963405555200, 2362804077652300800, 137275789612950374400, 8523776656311156172800, 563309040416875548364800
OFFSET
1,2
COMMENTS
Previous name was: Sum of all matrix elements of n X n Hilbert matrix M(i,j) = 1/(i+j-1) (i,j = 1..n) multiplied by (2*n-1)!/n!.
Let A(i, j) denote an infinite array such that the i-th row of this array is the sequence obtained by applying the partial sum operator i times to the harmonic sequence. For example, the first row starts as 1, 5/2, 13/3, ..., and the next row begins with 1, 7/2, 47/6, and so forth. Then a(n) equals n!*A(n, n) for all n. - John M. Campbell, Jan 20 2019
LINKS
Eric Weisstein's World of Mathematics, Hilbert Matrix.
Eric Weisstein's World of Mathematics, Harmonic Number.
FORMULA
a(n) = (2*n-1)!/n!*Sum(Sum(1/(i+j-1), {i, 1, n}), {j, 1, n}).
a(n) = 2*(2*n-1)!/(n-1)!*H'(2n), where H'(2n) = H(2n) - H(n), H'(n) = Sum[(1/k)*(-1)^(k+1), (k, 1, n}] is an alternate signs Harmonic number, H(n) = Sum[1/k, (k, 1, n}] is a Harmonic number, H[n] = A001008/A002805. - Alexander Adamchuk, Oct 25 2004
Sum_{k>0} a(k) * k! * x^(2*k + 1) / (2*k + 1)! = F(-1) + F((1 - x)/2) + log(2) * log((1 + x) / (1 - x)) / 2 + log((1 + x) / 2) * log((1 - x) / 2) / 2 where F(x) = Li_2(x) is the dilogarithm function. - Michael Somos, Dec 09 2013
2 * A078791(n) = a(n) * A000984(n). - Michael Somos, Apr 14 2015
a(n) = (2*n)!/n! * Sum_{k = 1..n} 1/(n + k). Column 1 of A257635. - Peter Bala, Nov 05 2015
E.g.f.: (log((sqrt(1-4*x)+1)/2)*(-3*x+sqrt(1-4*x)*(x-1)+1))/(4*x^2+sqrt(1-4*x)*(3*x-1)-5*x+1). - Vladimir Kruchinin, Jun 04 2016
a(n) = hypergeom([1,1,1-n], [2,n+2], 1)*n*(2*n)!/(n+1)!. - Peter Luschny, Jun 11 2016
a(n) ~ log(2) * 2^(2*n + 1/2) * n^n / exp(n). - Vaclav Kotesovec, Jul 10 2016
a(n) = Sum_{k=1..n} |s(n,k)|*k*(n+1)^(k-1) where s(n,k) are Stirling numbers of the first kind (A008275). - Ondrej Kutal, Oct 20 2021
EXAMPLE
n=2: HilbertMatrix[n,n]
1 1/2
1/2 1/3
so a(2) = (2*2-1)! / 2! * (1 + 1/2 + 1/2 + 1/3) = 7.
The n X n Hilbert matrix begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
G.f. = x + 7*x^2 + 74*x^3 + 1066*x^4 + 19524*x^5 + 434568*x^6 + ...
MAPLE
A098118 := n -> n!*coeff(series(ln(x+1)*add(binomial(2*n, j)*x^j, j=0..n), x, n+1), x, n): seq(A098118(n), n=1..17); # Peter Luschny, Jan 18 2015
A098118 := n -> hypergeom([1, 1, 1-n], [2, n+2], 1)*n*(2*n)!/(n+1)!:
seq(simplify(A098118(n)), n=1..17); # Peter Luschny, Jun 11 2016
A098118 := n -> sum(abs(Stirling1(n, k))*k*(n+1)^(k-1), k=1..n):
seq(A098118(n), n=1..17); # Ondrej Kutal, Oct 20 2021
MATHEMATICA
Table[(2n - 1)!/n! Sum[ 1/(i + j - 1), {i, n}, {j, n}], {n, 17}]
a[ n_] := If[ n < 1, 0, (2 n)! / n! Sum[ -(-1)^k / k, {k, 2 n}]]; (* Michael Somos, Dec 09 2013 *)
a[ n_] := If[ n < 1, 0, (2 n - 1)! / n! Sum[ 1 / (i + j - 1), {i, n}, {j, n}]]; (* Michael Somos, Apr 14 2015 *)
a[ n_] := If[ n < 1, 0, n! SeriesCoefficient[ (Log[ EllipticNomeQ[ m] / (m/16)]) EllipticK[ m] 16^n / (Binomial[2 n, n] 2 Pi), {m, 0, n}]]; (* Michael Somos, Apr 14 2015 *)
a[ n_] := If[ n < 1, 0, (2 n + 1)! / n! SeriesCoefficient[ PolyLog[2, -1] + PolyLog[2, (1 - x)/2] + Log[(1 + x)/2] Log[(1 - x)/2]/2 + Log[(1 + x)/(1 - x)] Log[2]/2, {x, 0, 2 n + 1}]]; (* Michael Somos, Apr 14 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, (2*n)! / n! * sum( k=1, 2*n, -(-1)^k / k))}; /* Michael Somos, Dec 09 2013 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alexander Adamchuk, Oct 25 2004
EXTENSIONS
New name from Peter Luschny, Jan 19 2015
STATUS
approved