login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266305
Number of n X n symmetric matrices with nonnegative integer entries and without zero rows or columns such that the sum of all entries is equal to 2n.
3
1, 1, 7, 74, 1060, 19013, 408650, 10219360, 291158230, 9302358947, 329192040880, 12775809098058, 539351216354728, 24600280965461923, 1205263251360664310, 63115789721408960624, 3517483455875467926588, 207834769804597591153769, 12976002600530598793672490
OFFSET
0,3
LINKS
FORMULA
a(n) = A138177(2n,n).
EXAMPLE
a(2) = 7:
[1 1] [2 1] [0 1] [2 0] [0 2] [3 0] [1 0]
[1 1] [1 0] [1 2] [0 2] [2 0] [0 1] [0 3].
MAPLE
gf:= k-> 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)):
A:= (n, k)-> coeff(series(gf(k), x, n+1), x, n):
a:= n-> add(A(2*n, n-j)*(-1)^j*binomial(n, j), j=0..n):
seq(a(n), n=0..20);
MATHEMATICA
gf[k_] := 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)); A[n_, k_] := SeriesCoefficient[ gf[k], {x, 0, n}]; a[n_] := Sum[A[2*n, n-j]*(-1)^j*Binomial[n, j], {j, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 25 2017, translated from Maple *)
CROSSREFS
Sequence in context: A365844 A341330 A379205 * A098118 A097821 A337387
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 31 2016
STATUS
approved