login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268309
Number of n X n symmetric matrices with nonnegative integer entries and without zero rows or columns such that the sum of all entries is equal to n^2.
3
1, 1, 7, 347, 83785, 85813461, 362302219609, 6227015262941276, 433865390872310453097, 122285854086662347886884837, 139236232279790897112737794283927, 639720298831885406784643598607618757713, 11848024220605180271987429760766015754937928643
OFFSET
0,3
LINKS
FORMULA
a(n) = A138177(n^2,n).
EXAMPLE
a(2) = 7:
[1 1] [2 1] [0 1] [2 0] [0 2] [3 0] [1 0]
[1 1] [1 0] [1 2] [0 2] [2 0] [0 1] [0 3].
MAPLE
gf:= k-> 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)):
A:= (n, k)-> coeff(series(gf(k), x, n+1), x, n):
a:= n-> add(A(n^2, n-j)*(-1)^j*binomial(n, j), j=0..n):
seq(a(n), n=0..15);
MATHEMATICA
gf[k_] := 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)); A[n_, k_] := SeriesCoefficient[ gf[k], {x, 0, n}]; a[n_] := Sum[A[n^2, n-j]*(-1)^j*Binomial[n, j], {j, 0, n}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 25 2017, translated from Maple *)
CROSSREFS
Sequence in context: A194504 A347505 A015479 * A234622 A142669 A239717
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 31 2016
STATUS
approved