login
Number of n X n symmetric matrices with nonnegative integer entries and without zero rows or columns such that the sum of all entries is equal to n^2.
3

%I #13 Jan 22 2024 08:46:08

%S 1,1,7,347,83785,85813461,362302219609,6227015262941276,

%T 433865390872310453097,122285854086662347886884837,

%U 139236232279790897112737794283927,639720298831885406784643598607618757713,11848024220605180271987429760766015754937928643

%N Number of n X n symmetric matrices with nonnegative integer entries and without zero rows or columns such that the sum of all entries is equal to n^2.

%H Alois P. Heinz, <a href="/A268309/b268309.txt">Table of n, a(n) for n = 0..45</a>

%F a(n) = A138177(n^2,n).

%e a(2) = 7:

%e [1 1] [2 1] [0 1] [2 0] [0 2] [3 0] [1 0]

%e [1 1] [1 0] [1 2] [0 2] [2 0] [0 1] [0 3].

%p gf:= k-> 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)):

%p A:= (n, k)-> coeff(series(gf(k), x, n+1), x, n):

%p a:= n-> add(A(n^2, n-j)*(-1)^j*binomial(n, j), j=0..n):

%p seq(a(n), n=0..15);

%t gf[k_] := 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)); A[n_, k_] := SeriesCoefficient[ gf[k], {x, 0, n}]; a[n_] := Sum[A[n^2, n-j]*(-1)^j*Binomial[n, j], {j, 0, n}]; Table[a[n], {n, 0, 15}] (* _Jean-François Alcover_, Feb 25 2017, translated from Maple *)

%Y Cf. A138177, A266305.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Jan 31 2016