login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138177
Triangle T(n,k) read by rows: number of k X k symmetric matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n, n>=1, 1<=k<=n.
6
1, 1, 2, 1, 4, 4, 1, 7, 15, 10, 1, 10, 36, 52, 26, 1, 14, 74, 176, 190, 76, 1, 18, 132, 460, 810, 696, 232, 1, 23, 222, 1060, 2705, 3756, 2674, 764, 1, 28, 347, 2180, 7565, 15106, 17262, 10480, 2620, 1, 34, 525, 4204, 19013, 51162, 83440, 80816, 42732, 9496, 1, 40
OFFSET
1,3
COMMENTS
See the Brualdi/Ma reference for the connection to A161126. - Joerg Arndt, Nov 02 2014
T(n,k) is also the number of semistandard Young tableaux of size n whose entries span the interval 1..k. See also Gus Wiseman's comment in A138178. The T(4,2) = 7 semi-standard Young tableaux of size 4 spanning the interval 1..2 are:
11 122 112 111 1222 1122 1112
22 2 2 2 . - Jacob Post, Jun 15 2018
LINKS
Richard A. Brualdi, Shi-Mei Ma, Enumeration of involutions by descents and symmetric matrices, European Journal of Combinatorics, vol.43, pp.220-228, (January 2015).
FindStat - Combinatorial Statistic Finder, Semistandard Young tableaux
Samantha Dahlberg, Combinatorial Proofs of Identities Involving Symmetric Matrices, arXiv:1410.7356 [math.CO], (27-October-2014)
FORMULA
T(n,k) = Sum_{i=0..k} (-1)^i * binomial(k,i) * A210391(n,k-i). - Alois P. Heinz, Apr 06 2015
EXAMPLE
Triangle T(n,k) begins:
1;
1, 2;
1, 4, 4;
1, 7, 15, 10;
1, 10, 36, 52, 26;
1, 14, 74, 176, 190, 76;
1, 18, 132, 460, 810, 696, 232;
1, 23, 222, 1060, 2705, 3756, 2674, 764;
...
MAPLE
gf:= k-> 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)):
A:= (n, k)-> coeff(series(gf(k), x, n+1), x, n):
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Apr 06 2015
MATHEMATICA
gf[k_] := 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)); A[n_, k_] := Coefficient[ Series [gf[k], {x, 0, n+1}], x, n]; T[n_, k_] := Sum[(-1)^j*Binomial[k, j]*A[n, k-j], {j, 0, k}]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 31 2016, after Alois P. Heinz *)
CROSSREFS
Cf. (row sums) A138178, A135589, A135588, A161126, A210391.
Main diagonal gives A000085. - Alois P. Heinz, Apr 06 2015
T(2n,n) gives A266305.
T(n^2,n) gives A268309.
Sequence in context: A214984 A118976 A210235 * A101559 A220537 A229717
KEYWORD
nonn,tabl
AUTHOR
Vladeta Jovovic, Mar 03 2008
STATUS
approved