The OEIS is supported by the many generous donors to the OEIS Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161126 Triangle read by rows: T(n,k) is the number of involutions of {1,2,...,n} having k descents (n >= 1; 0 <= k < n). 3
 1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 12, 6, 1, 1, 9, 28, 28, 9, 1, 1, 12, 57, 92, 57, 12, 1, 1, 16, 105, 260, 260, 105, 16, 1, 1, 20, 179, 630, 960, 630, 179, 20, 1, 1, 25, 289, 1397, 3036, 3036, 1397, 289, 25, 1, 1, 30, 444, 2836, 8471, 12132, 8471, 2836, 444, 30, 1, 1, 36 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Also number of ballot sequences of length n with k ascents; also number of standard Young tableaux with n cells such that there are k pairs of cells (v,v+1) with v+1 lying in a row below v. - Joerg Arndt, Feb 21 2014 See the Brualdi/Ma reference for the connection to A138177. - Joerg Arndt, Nov 02 2014 LINKS Alois P. Heinz, Rows n = 1..141, flattened Richard A. Brualdi, Shi-Mei Ma, Enumeration of involutions by descents and symmetric matrices, European Journal of Combinatorics, vol. 43, pp. 220-228, (January 2015). J. Désarménien and D. Foata, Fonctions symétriques et séries hypergéometriques basiques multivariées, Bull. Soc. Math. France, 113, 1985, 3-22. Samantha Dahlberg, Combinatorial Proofs of Identities Involving Symmetric Matrices, arXiv:1410.7356 [math.CO], 2014-2017. I. M. Gessel and C. Reutenauer, Counting permutations with given cycle structure and descent set, J. Combin. Theory, Ser. A, 64, 1993, 189-215. V. J. W. Guo and J. Zeng, The Eulerian distribution on involutions is indeed unimodal, J. Combin. Theory, Ser. A, 113, 2006, 1061-1071. FORMULA Sum_{k=1..n} T(n,k) = A000085(n) (row sums). Sum_{k=0..n-1} k*T(n,k) = A161125(n). Generating polynomial of row n is P(n,t) = (1-t)^(n+1) * Sum_{r>=0} t^r*Sum_{k=0..floor(n/2)} C(r(r+1)/2+k-1,k)*C(r+n-2k,n-2k) (see Eq. (2.5) in the Guo-Zeng paper; see first Maple program). Recursive relation for n >= 3, k >= 0: n*T(n,k) = (k+1)*T(n-1,k) + (n-k)*T(n-1,k-1) + [(k+1)^2 + n-2]*T(n-2,k) + [2k(n-k-1)-n+3]*T(n-2,k-1] + [(n-k)^2+n-2]*T(n-2,k-2) (see Eq. (2.4) in the Guo-Zeng paper; see 2nd Maple program). EXAMPLE T(4,2)=4 because we have 1432, 2143, 4231, and 3214. Triangle starts: 01: 1 02: 1, 1 03: 1, 2, 1 04: 1, 4, 4, 1 05: 1, 6, 12, 6, 1 06: 1, 9, 28, 28, 9, 1 07: 1, 12, 57, 92, 57, 12, 1 08: 1, 16, 105, 260, 260, 105, 16, 1 09: 1, 20, 179, 630, 960, 630, 179, 20, 1 10: 1, 25, 289, 1397, 3036, 3036, 1397, 289, 25, 1 11: 1, 30, 444, 2836, 8471, 12132, 8471, 2836, 444, 30, 1 12: 1, 36, 659, 5434, 21529, 42417, 42417, 21529, 5434, 659, 36, 1 13: 1, 42, 945, 9828, 50423, 132146, 181734, 132146, 50423, 9828, 945, 42, 1 ... MAPLE P := proc (n) options operator, arrow: sort(simplify((1-t)^(n+1)*(sum(t^r*(sum(binomial((1/2)*r*(r+1)+k-1, k)*binomial(r+n-2*k, n-2*k), k = 0 .. floor((1/2)*n))), r = 0 .. infinity)))) end proc: for n to 12 do seq(coeff(P(n), t, j), j = 0 .. n-1) end do; # yields sequence in triangular form T := proc(n, k) option remember; if k < 0 then 0 elif n <= k then 0 elif n = 1 and k = 0 then 1 elif n = 2 and k = 0 then 1 elif n = 2 and k = 1 then 1 else ((k+1)*T(n-1, k)+(n-k)*T(n-1, k-1)+((k+1)^2+n-2)*T(n-2, k)+(2*k*(n-k-1)-n+3)*T(n-2, k-1)+((n-k)^2+n-2)*T(n-2, k-2))/n end if end proc: for n to 12 do seq(T(n, k), k = 0 .. n-1) end do; # yields sequence in triangular form MATHEMATICA P[n_, t_] := (1-t)^(n+1)*Sum[t^r*Binomial[n+r, n]*HypergeometricPFQ[{(1 - n)/2, -n/2, r(r+1)/2}, {(-n-r)/2, (1-n-r)/2}, 1], {r, 0, n}]; row[n_] := CoefficientList[P[n, t] + O[t]^n, t]; Table[row[n], {n, 1, 13}] // Flatten (* Jean-François Alcover, Dec 20 2016 *) CROSSREFS Cf. A000085, A161125, A138177. Sequence in context: A274310 A096806 A116672 * A128562 A034368 A361745 Adjacent sequences: A161123 A161124 A161125 * A161127 A161128 A161129 KEYWORD nonn,tabl AUTHOR Emeric Deutsch, Jun 09 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 00:22 EST 2023. Contains 367717 sequences. (Running on oeis4.)