login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161127 Triangle read by rows: T(n,k) is the number of fixed-point-free involutions of {1,2,...,2n} having k descents (n>=1; 1<=k<2n-1). 0
1, 1, 1, 1, 1, 3, 7, 3, 1, 1, 6, 27, 37, 27, 6, 1, 1, 10, 76, 220, 331, 220, 76, 10, 1, 1, 15, 176, 897, 2438, 3341, 2438, 897, 176, 15, 1, 1, 21, 357, 2885, 12825, 30807, 41343, 30807, 12825, 2885, 357, 21, 1, 1, 28, 658, 7871, 53312, 203927, 452931, 589569 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

Row n contains 2n-1 entries.

Sum of entries in row n = (2n-1)!! = A001147(n).

Sum_{k=1..2n-1} k*T(n,k) = A001879(n-1).

LINKS

Table of n, a(n) for n=1..57.

J. Désarménien and D. Foata, Fonctions symetriques et series hypergeometriques basiques multivariees, Bull. Soc. Math. France, 113, 1985, 3-22.

I. M. Gessel and C. Reutenauer, Counting permutations with given cycle structure and descent set, J. Combin. Theory, Ser. A, 64, 1993, 189-215.

V. J. W. Guo and J. Zeng, The Eulerian distribution on involutions is indeed unimodal, J. Combin. Theory, Ser. A, 113, 2006, 1061-1071.

FORMULA

Recurrence: 2nT(n,k) = [k(k+1)+2n-2]T(n-1,k)+2[(k-1)(2n-k-1)+1]T(n-1,k-1)+[(2n-k)(2n-k+1)+2n-2]T(n-1,k-2) (k>=1, n>=2) (see Eq. (2.1) in the Guo-Zeng paper; see first Maple program).

Generating polynomial of row n is P(n,t) = (1 - t)^{2n+1}*Sum(C(j(j+1)/2 + n - 1, n)*t^j, j=0..infinity) (see Eq. (2.2) in the Guo-Zeng paper; see 2nd Maple program).

EXAMPLE

T(3,2)=3 because we have 215634, 341265, and 351624.

Triangle starts:

1;

1,1,1;

1,3,7,3,1;

1,6,27,37,27,6,1;

1,10,76,220,331,220,76,10,1;

MAPLE

T := proc (n, k) if k <= 0 or n <= 0 then 0 elif n = 1 and k = 1 then 1 elif 2*n <= k then 0 else ((1/2)*(k*(k+1)+2*n-2)*T(n-1, k)+(1/2)*(2*(k-1)*(2*n-k-1)+2)*T(n-1, k-1)+(1/2)*((2*n-k)*(2*n-k+1)+2*n-2)*T(n-1, k-2))/n end if end proc: for n to 8 do seq(T(n, k), k = 1 .. 2*n-1) end do; # end of program

for n to 8 do P[n] := sort(expand(simplify((1-t)^(2*n+1)*(sum(binomial((1/2)*i*(i+1)+n-1, n)*t^i, i = 0 .. infinity))))) end do: for n to 8 do seq(coeff(P[n], t, j), j = 1 .. 2*n-1) end do; # end of program

CROSSREFS

Cf. A001147, A001879.

Sequence in context: A134731 A133368 A153027 * A256978 A296442 A021272

Adjacent sequences:  A161124 A161125 A161126 * A161128 A161129 A161130

KEYWORD

nonn,tabf

AUTHOR

Emeric Deutsch, Jun 09 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 10:15 EST 2020. Contains 332304 sequences. (Running on oeis4.)