login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138178 Number of symmetric matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n. 45
1, 1, 3, 9, 33, 125, 531, 2349, 11205, 55589, 291423, 1583485, 8985813, 52661609, 319898103, 2000390153, 12898434825, 85374842121, 580479540219, 4041838056561, 28824970996809, 210092964771637, 1564766851282299, 11890096357039749, 92151199272181629 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of normal semistandard Young tableaux of size n, where a tableau is normal if its entries span an initial interval of positive integers. - Gus Wiseman, Feb 23 2018

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..500

FORMULA

G.f.: Sum_{n>=0} Sum_{k=0..n} (-1)^(n-k)*C(n,k)*(1-x)^(-k)*(1-x^2)^(-C(k,2)).

G.f.: Sum_{n>=0} 2^(-n-1)*(1-x)^(-n)*(1-x^2)^(-C(n,2)). - Vladeta Jovovic, Dec 09 2009

EXAMPLE

a(4) = 33 because there are 1 such matrix of type 1 X 1, 7 matrices of type 2 X 2, 15 of type 3 X 3 and 10 of type 4 X 4, cf. A138177.

From Gus Wiseman, Feb 23 2018: (Start)

The a(3) = 9 normal semistandard Young tableaux:

1 1 2 1 3 1 2 1 1 1 2 3 1 2 2 1 1 2 1 1 1

2 3 2 2 2

3

(End)

From Gus Wiseman, Nov 14 2018: (Start)

The a(4) = 33 matrices:

[4]

.

[30][21][20][11][10][02][01]

[01][10][02][11][03][20][12]

.

[200][200][110][101][100][100][100][100][011][010][010][010][001][001][001]

[010][001][100][010][020][011][010][001][100][110][101][100][020][010][001]

[001][010][001][100][001][010][002][011][100][001][010][002][100][101][110]

.

[1000][1000][1000][1000][0100][0100][0010][0010][0001][0001]

[0100][0100][0010][0001][1000][1000][0100][0001][0100][0010]

[0010][0001][0100][0010][0010][0001][1000][1000][0010][0100]

[0001][0010][0001][0100][0001][0010][0001][0100][1000][1000]

(End)

MAPLE

gf:= proc(j) local k, n; add(add((-1)^(n-k) *binomial(n, k) *(1-x)^(-k) *(1-x^2)^(-binomial(k, 2)), k=0..n), n=0..j) end: a:= n-> coeftayl(gf(n+1), x=0, n): seq(a(n), n=0..25); # Alois P. Heinz, Sep 25 2008

MATHEMATICA

Table[Sum[SeriesCoefficient[1/(2^(k+1)*(1-x)^k*(1-x^2)^(k*(k-1)/2)), {x, 0, n}], {k, 0, Infinity}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 03 2014 *)

multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n], 2], n], And[Union[First/@#]==Range[Max@@First/@#], Union[Last/@#]==Range[Max@@Last/@#], Sort[Reverse/@#]==#]&]], {n, 5}] (* Gus Wiseman, Nov 14 2018 *)

CROSSREFS

Row sums of A138177.

Cf. A007716, A120733, A135588, A296188.

Cf. A057151, A104601, A104602, A120732, A316983, A320796, A321401, A321405, A321407.

Sequence in context: A049171 A050387 A049157 * A063027 A148998 A049185

Adjacent sequences: A138175 A138176 A138177 * A138179 A138180 A138181

KEYWORD

easy,nonn

AUTHOR

Vladeta Jovovic, Mar 03 2008

EXTENSIONS

More terms from Alois P. Heinz, Sep 25 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 14:50 EDT 2023. Contains 361595 sequences. (Running on oeis4.)