OFFSET
1,3
COMMENTS
A number x is p-smooth if all prime factors of x are <= p. The length of row n is A002071(n). Row n begins with 1 and ends with A002072(n). Each term of row n-1 is in row n.
The n-th row is the union of the rows 1 to n of A145605. - M. F. Hasler, Jan 18 2015
REFERENCES
See A002071.
LINKS
T. D. Noe, Rows n=1..10 of triangle, flattened
EXAMPLE
The table reads:
1,
1, 2, 3, 8,
1, 2, 3, 4, 5, 8, 9, 15, 24, 80, (= A085152)
1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80, 125, 224, 2400, 4374, (= A085153)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 20, 21, 24, 27, 32, 35, 44, 48, 49, 54, 55, 63, 80, 98, 99, 120, 125, 175, 224, 242, 384, 440, 539, 2400, 3024, 4374, 9800 (= A252494),
...
MATHEMATICA
(* This program needs x maxima taken from A002072. *) xMaxima = A002072; smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; row[n_] := Module[{sn}, sn = smoothNumbers[Prime[n], xMaxima[[n]]+1]; Reap[Do[If[sn[[i]]+1 == sn[[i+1]], Sow[sn[[i]]]], {i, 1, Length[sn]-1}]][[2, 1]]]; Table[Print[n]; row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 16 2015, updated Nov 10 2016 *)
PROG
(PARI) A138180_row=[]; A138180(n, k)={if(k, A138180(n)[k], #A138180_row<n && A138180_row=concat(A138180_row, vector(n)); if(#A138180_row[n], A138180_row[n], k=0; p=prime(n); A138180_row[n]=vector(A002071(n), i, until( vecmax(factor(k++)[, 1])<=p && vecmax(factor(k--+(k<2))[, 1])<=p, k++); k)))} \\ A138180(n) (w/o 2nd arg. k) returns the whole row. - M. F. Hasler, Jan 16 2015
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
T. D. Noe, Mar 04 2008
STATUS
approved