OFFSET
1,2
COMMENTS
Equivalently: Numbers n such that all prime factors of n and n+1 are <= 13, i.e., both are in A080197.
This sequence is complete by a theorem of Stormer, cf. A002071.
LINKS
MAPLE
N:= 130000: # to get all entries <= N
f:= proc(n)
uses padic;
evalb(2^ordp(n, 2)*3^ordp(n, 3)*5^ordp(n, 5)*7^ordp(n, 7)*11^ordp(n, 11)*13^ordp(n, 13) = n)
end proc:
L:= map(f, [$1..N+1]):
select(t -> L[t] and L[t+1], [$1..N]); # Robert Israel, Jan 16 2015
MATHEMATICA
Select[Range[123456], FactorInteger[ # (# + 1)][[ -1, 1]] <= 13 &]
PROG
(PARI) for(n=1, 123456, vecmax(factor(n++, 13)[, 1])<17 && vecmax(factor(n--+(n<2), 13))<17 && print1(n", ")) \\ Skips the next n if n+1 is not 13-smooth: Twice as fast as the naïve version. Instead of vecmax(.)<17 one could use is_A080197().
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
M. F. Hasler, Jan 16 2015
STATUS
approved