login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002071
Number of pairs of consecutive integers x, x+1 such that all prime factors of both x and x+1 are at most the n-th prime.
(Formerly M3386 N1366)
16
1, 4, 10, 23, 40, 68, 108, 167, 241, 345, 482, 653, 869, 1153, 1502, 1930, 2454, 3106, 3896
OFFSET
1,2
COMMENTS
Størmer's theorem proves that a(n) is finite. - Charles R Greathouse IV, Feb 19 2013
Also: Number of positive integers x such that x(x+1) is prime(n)-smooth. - M. F. Hasler, Jan 16 2015
Also: Row lengths of A138180; partial sums of A145604. - M. F. Hasler, Jan 16 2015
On an effective abc conjecture (c < rad(abc)^2), we have that a(20)-a(33) is (4839, 6040, 7441, 9179, 11134, 13374, 16167, 19507, 23367, 27949, 33233, 39283, 46166, 54150). - Lucas A. Brown, Oct 16 2022
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Lucas A. Brown, stormer.py.
E. F. Ecklund and R. B. Eggleton, Prime factors of consecutive integers, Amer. Math. Monthly, 79 (1972), 1082-1089.
D. Eppstein, Smooth pairs.
D. Eppstein, Python program
D. H. Lehmer, On a problem of Størmer, Ill. J. Math., 8 (1964), 57-69.
C. Stormer, Quelques théorèmes sur l'équation de Pell x^2 - Dy^2 = +-1 et leurs applications, Skrifter Videnskabs-selskabet (Christiania), Mat.-Naturv (1897). Kl. I (2).
FORMULA
a(n) <= (2^n-1)*(prime(n)+1)/2 is implicit in Lehmer 1964. - Charles R Greathouse IV, Feb 19 2013
MATHEMATICA
(* This program needs x maxima taken from A002072. *) xMaxima = A002072;
smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; a[n_] := Module[{sn, cnt}, sn = smoothNumbers[Prime[n], xMaxima[[n]]+1]; cnt = 0; Do[If[sn[[i]]+1 == sn[[i+1]], cnt++], {i, 1, Length[sn]-1}]; cnt]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 16}] (* Jean-François Alcover, Nov 10 2016 *)
A002072 = {1, 8, 80, 4374, 9800, 123200, 336140, 11859210, 11859210};
Table[Length[Select[Table[Max[FactorInteger[x], FactorInteger[x + 1]], {x, A002072[[n]]}], # <= Prime[n] &]], {n, 7}] (* Robert Price, Oct 29 2018 *)
PROG
(PARI) A002071(n)=[1, 4, 10, 23, 40, 68, 108, 167, 241, 345, 482, 653, 869, 1153, 1502][n] \\ "practical" solution. - M. F. Hasler, Jan 16 2015
(PARI) A002071(n, b=A002072, c=1, p=prime(n))={for(k=2, b(n), vecmax(factor(k++, p)[, 1])<=p && vecmax(factor(k--+(k<2), p)[, 1])<=p && c++); c} \\ b can be any upper bound for A002072, e.g., n->10^n should work, too. - M. F. Hasler, Jan 16 2015
CROSSREFS
Cf. A138180 (triangle of x values for each n).
Cf. A285283 (equivalent for x^2 + 1). - Tomohiro Yamada, Apr 22 2017
Sequence in context: A276308 A334260 A038423 * A375749 A024980 A002766
KEYWORD
nonn,nice,hard,more
EXTENSIONS
Better description and more terms from David Eppstein, Mar 23 2007
a(16) from Jean-François Alcover, Nov 10 2016
a(17)-a(18) from Lucas A. Brown, Aug 23 2020
a(19) from Lucas A. Brown, Oct 16 2022
STATUS
approved