|
|
A002073
|
|
Numerators of coefficients in an asymptotic expansion of the confluent hypergeometric function F(1-b; 2; 4b).
(Formerly M2268 N0897)
|
|
1
|
|
|
1, -3, 3, 2, -48, -362, -49711, 13952, 574406627, 64140842, -841796802304, -326397876886, -23544490420768844, 45123679545344, 449339765798227104271, 17766371321955738181048, -20395677580116057792512, -74026374065532274752108118
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
REFERENCES
|
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
Let f(x) = [Sum_{k>=1}(3/(2*k+1)) * x^(2*k+1)]^(1/3) = x + (1/5)*x^3 + (18/175) * x^5 + ...; let g(x) be the Lagrange inversion of f(x), g(x) = REVERT(f(x)) = 1 - (1/5) * x^3 + (3/175) * x^5 + .... Then a(n) = numerator((2 * n + 1) * coeff(g(x), 2*n+1)). - Sean A. Irvine, Jun 20 2013
|
|
MATHEMATICA
|
nmax = 17;
S = Sum[(3/(2k+1)) x^(2k+1), {k, 1, Infinity}]^(1/3) + O[x]^(3nmax) // Normal // Simplify[#, x > 0]& // InverseSeries[# + O[x]^(3nmax), x]&;
a[n_] := Numerator[(2n+1) SeriesCoefficient[S, {x, 0, 2n+1}]];
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|