login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002073 Numerators of coefficients in an asymptotic expansion of the confluent hypergeometric function F(1-b; 2; 4b).
(Formerly M2268 N0897)
1
1, -3, 3, 2, -48, -362, -49711, 13952, 574406627, 64140842, -841796802304, -326397876886, -23544490420768844, 45123679545344, 449339765798227104271, 17766371321955738181048, -20395677580116057792512, -74026374065532274752108118 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Peter Henrici, Automatic computations with power series, J. Assoc. Comput. Mach. 3 (1956), 10-15.
FORMULA
Let f(x) = [Sum_{k>=1}(3/(2*k+1)) * x^(2*k+1)]^(1/3) = x + (1/5)*x^3 + (18/175) * x^5 + ...; let g(x) be the Lagrange inversion of f(x), g(x) = REVERT(f(x)) = 1 - (1/5) * x^3 + (3/175) * x^5 + .... Then a(n) = numerator((2 * n + 1) * coeff(g(x), 2*n+1)). - Sean A. Irvine, Jun 20 2013
MATHEMATICA
nmax = 17;
S = Sum[(3/(2k+1)) x^(2k+1), {k, 1, Infinity}]^(1/3) + O[x]^(3nmax) // Normal // Simplify[#, x > 0]& // InverseSeries[# + O[x]^(3nmax), x]&;
a[n_] := Numerator[(2n+1) SeriesCoefficient[S, {x, 0, 2n+1}]];
a /@ Range[0, nmax] (* Jean-François Alcover, Oct 01 2020 *)
CROSSREFS
Cf. A002074 (denominators).
Sequence in context: A196544 A289893 A265466 * A247093 A329273 A130719
KEYWORD
sign
AUTHOR
EXTENSIONS
More terms from Sean A. Irvine, Jun 20 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 23:36 EDT 2024. Contains 375991 sequences. (Running on oeis4.)