OFFSET
1,2
COMMENTS
In other words, x^2 + 1 is A002313(n)-smooth.
Størmer shows that the number of such integers is finite for any n.
a(n) <= 3^n - 2^n follows from Størmer's argument.
a(n) <= (2^n-1)*(A002313(n)+1)/2 is implicit in Lehmer 1964.
Luca 2004 determines all integers x such that x^2 + 1 is 100-smooth, which is pushed to 200 by Najman 2010.
LINKS
D. H. Lehmer, On a problem of Størmer, Ill. J. Math., 8 (1964), 57--69.
Florian Luca, Primitive divisors of Lucas sequences and prime factors of x^2 + 1 and x^4 + 1, Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 31 (2004), pp. 19--24.
Filip Najman, Smooth values of some quadratic polynomials, Glas. Mat. 45 (2010), 347--355. Tables are available in the author's Home Page (gives all 811 numbers x such that x^2+1 has no prime factor greater than 197).
A. Schinzel, On two theorems of Gelfond and some of their applications, Acta Arithmetica 13 (1967-1968), 177--236.
Carl Størmer, Quelques théorèmes sur l'équation de Pell x^2 - Dy^2 = +-1 et leurs applications (in French), Skrifter Videnskabs-selskabet (Christiania), Mat.-Naturv. Kl. I (2), 48 pp.
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Tomohiro Yamada, Apr 16 2017
EXTENSIONS
a(13)-a(22) added by Andrew Howroyd, Dec 22 2024
STATUS
approved