login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A285283 Number of integers x such that the greatest prime factor of x^2 + 1 is at most A002313(n), the n-th prime not congruent to 3 mod 4. 3
1, 4, 9, 15, 22, 32, 41, 57, 74, 94, 120, 156 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

In other words, x^2 + 1 is A002313(n)-smooth.

Størmer shows that the number of such integers is finite for any n.

a(n) <= 3^n - 2^n follows from Størmer's argument.

a(n) <= (2^n-1)*(A002313(n)+1)/2 is implicit in Lehmer 1964.

Luca 2004 determines all integers x such that x^2 + 1 is 100-smooth, which is pushed to 200 by Najman 2010.

LINKS

Table of n, a(n) for n=1..12.

D. H. Lehmer, On a problem of Størmer, Ill. J. Math., 8 (1964), 57--69.

Florian Luca, Primitive divisors of Lucas sequences and prime factors of x^2 + 1 and x^4 + 1, Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 31 (2004), pp. 19--24.

Filip Najman, Smooth values of some quadratic polynomials, Glas. Mat. 45 (2010), 347--355. Tables are available in the author's Home Page (gives all 811 numbers x such that x^2+1 has no prime factor greater than 197).

A. Schinzel, On two theorems of Gelfond and some of their applications, Acta Arithmetica 13 (1967-1968), 177--236.

Carl Størmer, Quelques théorèmes sur l'équation de Pell x^2 - Dy^2 = +-1 et leurs applications (in French), Skrifter Videnskabs-selskabet (Christiania), Mat.-Naturv. Kl. I (2), 48 pp.

CROSSREFS

Equivalents for x(x+1): A145604

Cf. A014442, A185389

Cf. A285282.

Sequence in context: A022443 A281026 A079423 * A243536 A184005 A194106

Adjacent sequences:  A285280 A285281 A285282 * A285284 A285285 A285286

KEYWORD

nonn,hard,more

AUTHOR

Tomohiro Yamada, Apr 16 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 18:45 EDT 2021. Contains 348175 sequences. (Running on oeis4.)