login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285282
Numbers n such that n^2 + 1 is 13-smooth.
4
1, 2, 3, 5, 7, 8, 18, 57, 239
OFFSET
1,2
COMMENTS
Equivalently: Numbers n such that all prime factors of n^2 + 1 are <= 13.
Since an odd prime factor of n^2 + 1 must be of the form 4m + 1, n^2 + 1 must be of the form 2*5^a*13^b.
This sequence is complete by a theorem of Størmer.
The largest instance 239^2 + 1 = 2*13^4 also gives the only nontrivial solution for x^2 + 1 = 2y^4 (Ljunggren).
REFERENCES
W. Ljunggren, Zur Theorie der Gleichung x^2 + 1 = 2y^4, Avh. Norsk Vid. Akad. Oslo. 1(5) (1942), 1--27.
LINKS
A. Schinzel, On two theorems of Gelfond and some of their applications, Acta Arithmetica 13 (1967-1968), 177--236.
Ray Steiner, Simplifying the Solution of Ljunggren's Equation X^2 + 1 = 2Y^4, J. Number Theory 37 (1991), 123--132, more accesible proof of Ljunggren's result.
Carl Størmer, Quelques théorèmes sur l'équation de Pell x^2 - Dy^2 = +-1 et leurs applications (in French), Skrifter Videnskabs-selskabet (Christiania), Mat.-Naturv. Kl. I Nr. 2 (1897), 48 pp.
EXAMPLE
For n = 8, a(8)^2 + 1 = 57^2 + 1 = 3250 = 2*5^3*13.
MATHEMATICA
Select[Range[1000], FactorInteger[#^2 + 1][[-1, 1]] <= 13&] (* Jean-François Alcover, May 17 2017 *)
PROG
(PARI) for(n=1, 9e6, if(vecmax(factor(n^2+1)[, 1])<=13, print1(n", ")))
(Python)
from sympy import primefactors
def ok(n): return max(primefactors(n**2 + 1))<=13 # Indranil Ghosh, Apr 16 2017
CROSSREFS
Cf. A014442, A252493 (n(n+1) instead of n^2 + 1).
Sequence in context: A278645 A352290 A350707 * A105404 A238378 A075012
KEYWORD
nonn,fini,full
AUTHOR
Tomohiro Yamada, Apr 16 2017
STATUS
approved