OFFSET
1,2
COMMENTS
A281618 is a subsequence.
The corresponding greatest prime Fibonacci factors of the sequence are 2, 5, 5, 13, 5, 13, 13, 89, 89, 13, 233, 89, 233, ...
The Fibonacci numbers of the sequence are 1, 2, 3, 5, 8, 34, 55, 89, 144, 233, 377, 610, 987, 2584, 4181, 10946, 17711, ... (subsequence of A000045).
The Lucas numbers of the sequence are 1, 2, 3, 7, 18, 123, 322, 843, 2207, 5778, 39603, 103682, ... (subsequence of A000032).
The prime numbers of the sequence are 2, 3, 5, 7, 89, 233, 239, 1487, 2207, 2707, 3793, 4217, 11789, 11981, 13763, ... including the prime Fibonacci numbers 2, 3, 5, 89, 233, 1066340417491710595814572169, ... (subsequence of A005478).
EXAMPLE
18 is in the sequence because 18^2 + 1 = 5^2*13 and 13 is a Fibonacci number.
MAPLE
q:= n-> (t-> ormap(issqr, [t+4, t-4]))(5*max(numtheory[factorset](n^2+1))^2):
select(q, [$1..12000])[]; # Alois P. Heinz, Mar 11 2022
MATHEMATICA
With[{f = Fibonacci[Range[21]], m = f[[-1]]}, Select[Range[m], MemberQ[f, FactorInteger[#^2 + 1][[-1, 1]]] &]] (* Amiram Eldar, Mar 11 2022 *)
PROG
(PARI) isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));
isok(m) = isfib(vecmax(factor(m^2+1)[, 1])); \\ Michel Marcus, Mar 11 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Mar 11 2022
STATUS
approved