The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A352289 a(1) = 1 and thereafter a(n) = 2*prime(a(n-1)). 2
 1, 4, 14, 86, 886, 13766, 298154, 8455786, 300427382, 12942000398, 659492202274, 38995629272042, 2634767648759954, 200877694833442486, 17101872791349773894 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS In Matula-Goebel tree codes, a(n) is a rooted caterpillar consisting of a path of n-1 internal vertices down, and n childless vertices under them so each has exactly 2 children. Mir, Rosselló, and Rotger show that among phylogenic trees (meaning series-reduced, no vertex with just 1 child) with n childless vertices, tree a(n) has the largest total cophenetic index A352288(a(n)) = binomial(n,3). LINKS Table of n, a(n) for n=1..15. Arnau Mir, Francesc Rosselló, and Lucía Rotger, A New Balance Index for Phylogenetic Trees, arXiv:1202.1223 [q-bio.PE], 2012. EXAMPLE For n=3, a(3) = 14 is the Matula-Goebel code of the following tree root 14 / \ tree numbers of subtrees shown, 4 1 with "1" being childless, / \ and n=3 of those 1 1 MATHEMATICA NestList[2 Prime[#] &, 1, 10] (* Michael De Vlieger, Apr 18 2022 *) PROG (PARI) a(n) = my(ret=1); for(i=2, n, ret=2*prime(ret)); ret; (Python) from functools import lru_cache from sympy import prime @lru_cache(maxsize=None) def A352289(n): return 1 if n == 1 else 2*prime(A352289(n-1)) # Chai Wah Wu, Apr 18 2022 CROSSREFS Cf. A352288 (total cophenetic index). Cf. A331937. Sequence in context: A024421 A259353 A339193 * A330465 A202139 A331637 Adjacent sequences: A352286 A352287 A352288 * A352290 A352291 A352292 KEYWORD nonn,more AUTHOR Kevin Ryde, Mar 16 2022 EXTENSIONS a(10)-a(15) from Daniel Suteu, Mar 19 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 10:08 EDT 2024. Contains 375159 sequences. (Running on oeis4.)