login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338762
Greatest prime Fibonacci divisor of F(n)^2 + 1 where F(n) is the n-th Fibonacci number, or 0 if no such prime factor exists.
8
2, 2, 5, 5, 13, 13, 5, 13, 89, 89, 233, 233, 89, 233, 1597, 1597, 5, 1597, 1597, 13, 28657, 28657, 13, 28657, 28657, 5, 514229, 514229, 2, 514229, 514229, 89, 13, 89, 89, 13, 233, 233, 0, 233, 433494437, 433494437, 5, 433494437, 2971215073, 2971215073, 13, 2971215073
OFFSET
1,1
COMMENTS
a(n) = 0 for n = 39, 60, 69, 72, ... .
a(5385) has 1126 decimal digits. - Chai Wah Wu, Nov 19 2020
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..5384 (n = 1..1000 from Alois P. Heinz)
EXAMPLE
a(6) = 13 because F(6)^2 + 1 = 8^2 + 1 = 65 = 5*13 and 13 is the greatest prime Fibonacci divisor.
MAPLE
a:= proc(n) local F, m, t; F, m, t:=
[1, 2], 0, (<<0|1>, <1|1>>^n)[2, 1]^2+1;
while F[2]<=t do if isprime(F[2]) and irem(t, F[2])=0
then m:=F[2] fi; F:= [F[2], F[1]+F[2]]
od; m
end:
seq(a(n), n=1..50); # Alois P. Heinz, Nov 07 2020
PROG
(PARI) isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));
a(n) = my(f=factor(fibonacci(n)^2+1)[, 1]~, v=select(x->isfib(x), f)); if (#v, vecmax(v), 0); \\ Michel Marcus, Nov 07 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Nov 07 2020
STATUS
approved