OFFSET
0,2
COMMENTS
a(n) is the product of two Fibonacci numbers.
LINKS
Index entries for linear recurrences with constant coefficients, signature (3,0,-3,1).
FORMULA
a(n) = A007598(n)+1.
G.f.: -(2*x^3-4*x^2-x+1)/(x^4-3*x^3+3*x-1). - Alois P. Heinz, Jul 17 2014
Sum_{n>=0} 1/a(n) = (3 + 5*sqrt(5))/6 = (5*phi - 1)/3, where phi is the golden ratio (A001622). - Amiram Eldar, Oct 20 2020
a(2n) = A000045(2n-1)*A000045(2n+1). a(2n+1) = A000045(2n-1)*A000045(2n+3). - Chai Wah Wu, Nov 26 2020
a(n) = a(-n) = |F(n) + i|^2 for all n in Z. - Michael Somos, Sep 16 2023
MAPLE
with(numtheory):with(combinat, fibonacci):nn:=100:for i from 0 to nn do:x:=fibonacci(i)^2+1: printf(`%d, `, x):od:
MATHEMATICA
Fibonacci[Range[0, 30]]^2+1 (* Harvey P. Dale, Aug 05 2018 *)
PROG
(PARI) a(n) = fibonacci(n)^2+1; \\ Michel Marcus, Oct 20 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michel Lagneau, Jul 17 2014
STATUS
approved