OFFSET
0,1
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..10000
J. East and N. Ruškuc, Classification of congruences of twisted partition monoids, Advances in Mathematics, 395 (2022); arXiv version, arXiv:2010.04392 [math.RA], 2020.
J. East, J. Mitchell, N. Ruškuc and M. Torpey, Congruence lattices of finite diagram monoids, Advances in Mathematics, 333 (2018), 931-1003; arXiv version, arXiv:1709.00142 [math.GR], 2018.
Matthias Fresacher, Congruence Lattices of Finite Twisted Brauer Monoids, youtube video (2023).
Matthias Fresacher, (10min B&TL) Congruence Lattices of Finite Twisted Brauer & Temperley-Lieb Monoids-MatthiasFresacher, youtube video (2024).
Matthias Fresacher, (50min B&TL) Congruence Lattices of Finite Twisted Brauer & Temperley-Lieb Monoids-MatthiasFresacher, youtube video (2024).
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
a(n) = (3*n + 1)/2 if n is odd.
a(n) = (3*n + 14)/2 if n is even and n >= 4.
a(n) = a(n-2) + 3 for n >= 5.
G.f.: -(5*x^5-5*x^4-x^2-2)/((x+1)*(x-1)^2).
a(n) = A147677(n+1) for n >= 3.
MATHEMATICA
LinearRecurrence[{1, 1, -1}, {2, 2, 5, 5, 13, 8}, 100] (* Paolo Xausa, Feb 27 2024 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Matthias Fresacher, Jan 09 2024
STATUS
approved