login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368925
The minimal exponent in the prime factorization of the powerful numbers.
1
0, 2, 3, 2, 4, 2, 3, 5, 2, 2, 6, 2, 4, 2, 2, 2, 3, 7, 2, 2, 2, 2, 3, 2, 5, 8, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 9, 2, 2, 4, 3, 2, 2, 6, 2, 2, 2, 3, 2, 2, 2, 2, 3, 10, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 11, 2, 7, 3, 2, 2, 2, 4
OFFSET
1,2
LINKS
FORMULA
a(n) = A051904(A001694(n)).
a(n) >= 2 for n >= 2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2.
MATHEMATICA
s[n_] := If[n == 1, 0, Min @@ Last /@ FactorInteger[n]]; s /@ Select[Range[3000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]
(* or *)
f[n_] := Module[{e = Min[FactorInteger[n][[;; , 2]]]}, If[n == 1, 0, If[e > 1, e, Nothing]]]; Array[f, 3000]
PROG
(PARI) lista(kmax) = {my(e); for(k = 1, kmax, if(k == 1, print1(0, ", "), e = vecmin(factor(k)[, 2]); if(e > 1, print1(e, ", ")))); }
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Feb 15 2024
STATUS
approved