login
A368928
Triangle read by rows where T(n,k) is the number of labeled loop-graphs with n vertices and n edges, k of which are loops.
4
1, 0, 1, 0, 2, 1, 1, 9, 9, 1, 15, 80, 90, 24, 1, 252, 1050, 1200, 450, 50, 1, 5005, 18018, 20475, 9100, 1575, 90, 1, 116280, 379848, 427329, 209475, 46550, 4410, 147, 1, 3108105, 9472320, 10548720, 5503680, 1433250, 183456, 10584, 224, 1
OFFSET
0,5
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
FORMULA
T(n,k) = binomial(n,k)*binomial(binomial(n,2),n-k).
EXAMPLE
Triangle begins:
1
0 1
0 2 1
1 9 9 1
15 80 90 24 1
252 1050 1200 450 50 1
5005 18018 20475 9100 1575 90 1
The loop-graphs counted in row n = 3 (loops shown as singletons):
{12}{13}{23} {1}{12}{13} {1}{2}{12} {1}{2}{3}
{1}{12}{23} {1}{2}{13}
{1}{13}{23} {1}{2}{23}
{2}{12}{13} {1}{3}{12}
{2}{12}{23} {1}{3}{13}
{2}{13}{23} {1}{3}{23}
{3}{12}{13} {2}{3}{12}
{3}{12}{23} {2}{3}{13}
{3}{13}{23} {2}{3}{23}
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n], {1, 2}], {n}], Count[#, {_}]==k&]], {n, 0, 5}, {k, 0, n}]
T[n_, k_]:= Binomial[n, k]*Binomial[Binomial[n, 2], n-k]; Table[T[n, k], {n, 0, 8}, {k, 0, n}]// Flatten (* Stefano Spezia, Jan 14 2024 *)
PROG
(PARI) T(n, k) = binomial(n, k)*binomial(binomial(n, 2), n-k) \\ Andrew Howroyd, Jan 14 2024
CROSSREFS
Row sums are A014068, unlabeled version A000666.
Column k = 0 is A116508, covering version A367863.
The covering case is A368597.
The unlabeled version is A368836.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A058891 counts set-systems (without singletons A016031), unlabeled A000612.
A322661 counts labeled covering loop-graphs, connected A062740.
Sequence in context: A128434 A176417 A119731 * A283321 A155718 A327088
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Jan 11 2024
STATUS
approved