OFFSET
0,5
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
FORMULA
T(n,k) = binomial(n,k)*binomial(binomial(n,2),n-k).
EXAMPLE
Triangle begins:
1
0 1
0 2 1
1 9 9 1
15 80 90 24 1
252 1050 1200 450 50 1
5005 18018 20475 9100 1575 90 1
The loop-graphs counted in row n = 3 (loops shown as singletons):
{12}{13}{23} {1}{12}{13} {1}{2}{12} {1}{2}{3}
{1}{12}{23} {1}{2}{13}
{1}{13}{23} {1}{2}{23}
{2}{12}{13} {1}{3}{12}
{2}{12}{23} {1}{3}{13}
{2}{13}{23} {1}{3}{23}
{3}{12}{13} {2}{3}{12}
{3}{12}{23} {2}{3}{13}
{3}{13}{23} {2}{3}{23}
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n], {1, 2}], {n}], Count[#, {_}]==k&]], {n, 0, 5}, {k, 0, n}]
T[n_, k_]:= Binomial[n, k]*Binomial[Binomial[n, 2], n-k]; Table[T[n, k], {n, 0, 8}, {k, 0, n}]// Flatten (* Stefano Spezia, Jan 14 2024 *)
PROG
(PARI) T(n, k) = binomial(n, k)*binomial(binomial(n, 2), n-k) \\ Andrew Howroyd, Jan 14 2024
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Jan 11 2024
STATUS
approved