login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062740
Number of connected labeled graphs with loops.
51
1, 2, 4, 32, 608, 23296, 1709056, 238880768, 64396439552, 33943701028864, 35324404321091584, 72994114660256448512, 300460426062916084563968, 2468021884106048216693211136, 40495494119922790159005962469376, 1328011048967552376327692463141552128
OFFSET
0,2
LINKS
FORMULA
E.g.f.: 1+log( Sum_{n >= 0} 2^binomial(n+1, 2)*x^n/n! ).
E.g.f.: A(2*x) where A(x) is the e.g.f. for A001187. - Geoffrey Critzer, Feb 01 2014
MAPLE
logtr:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1 else p(n)- add(k *binomial(n, k) *p(n-k) *b(k), k=1..n-1)/n fi end end:
a:= logtr(n-> 2^binomial(n+1, 2)):
seq(a(n), n=0..20); # Alois P. Heinz, Feb 01 2014
MATHEMATICA
nn=14; g=Sum[2^Binomial[n, 2](2x)^n/n!, {n, 0, nn}]; Range[0, nn]!CoefficientList[Series[Log[g]+1, {x, 0, nn}], x] (* Geoffrey Critzer, Feb 01 2014 *)
CROSSREFS
Sequence in context: A304862 A118992 A012509 * A336832 A122214 A122216
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jul 12 2001
STATUS
approved