Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jan 14 2024 16:11:04
%S 1,0,1,0,2,1,1,9,9,1,15,80,90,24,1,252,1050,1200,450,50,1,5005,18018,
%T 20475,9100,1575,90,1,116280,379848,427329,209475,46550,4410,147,1,
%U 3108105,9472320,10548720,5503680,1433250,183456,10584,224,1
%N Triangle read by rows where T(n,k) is the number of labeled loop-graphs with n vertices and n edges, k of which are loops.
%H Andrew Howroyd, <a href="/A368928/b368928.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50)
%F T(n,k) = binomial(n,k)*binomial(binomial(n,2),n-k).
%e Triangle begins:
%e 1
%e 0 1
%e 0 2 1
%e 1 9 9 1
%e 15 80 90 24 1
%e 252 1050 1200 450 50 1
%e 5005 18018 20475 9100 1575 90 1
%e The loop-graphs counted in row n = 3 (loops shown as singletons):
%e {12}{13}{23} {1}{12}{13} {1}{2}{12} {1}{2}{3}
%e {1}{12}{23} {1}{2}{13}
%e {1}{13}{23} {1}{2}{23}
%e {2}{12}{13} {1}{3}{12}
%e {2}{12}{23} {1}{3}{13}
%e {2}{13}{23} {1}{3}{23}
%e {3}{12}{13} {2}{3}{12}
%e {3}{12}{23} {2}{3}{13}
%e {3}{13}{23} {2}{3}{23}
%t Table[Length[Select[Subsets[Subsets[Range[n], {1,2}],{n}],Count[#,{_}]==k&]],{n,0,5},{k,0,n}]
%t T[n_,k_]:= Binomial[n,k]*Binomial[Binomial[n,2],n-k]; Table[T[n,k],{n,0,8},{k,0,n}]// Flatten (* _Stefano Spezia_, Jan 14 2024 *)
%o (PARI) T(n,k) = binomial(n,k)*binomial(binomial(n,2),n-k) \\ _Andrew Howroyd_, Jan 14 2024
%Y Row sums are A014068, unlabeled version A000666.
%Y Column k = 0 is A116508, covering version A367863.
%Y The covering case is A368597.
%Y The unlabeled version is A368836.
%Y A000085, A100861, A111924 count set partitions into singletons or pairs.
%Y A006125 counts graphs, unlabeled A000088.
%Y A006129 counts covering graphs, unlabeled A002494.
%Y A058891 counts set-systems (without singletons A016031), unlabeled A000612.
%Y A322661 counts labeled covering loop-graphs, connected A062740.
%Y Cf. A057500, A079491, A339065, A368596, A368927.
%K nonn,tabl
%O 0,5
%A _Gus Wiseman_, Jan 11 2024