OFFSET
0,1
LINKS
Matthias Fresacher, Table of n, a(n) for n = 0..10000
J. East and N. Ruškuc, Classification of congruences of twisted partition monoids, Advances in Mathematics, 395 (2022); arXiv version, arXiv:2010.04392 [math.RA], 2020.
J. East, J. Mitchell, N. Ruškuc and M. Torpey, Congruence lattices of finite diagram monoids, Advances in Mathematics, 333 (2018), 931-1003; arXiv version, arXiv:1709.00142 [math.GR], 2018.
Matthias Fresacher, (10min B&TL) Congruence Lattices of Finite Twisted Brauer & Temperley-Lieb Monoids-MatthiasFresacher, youtube video (2024).
Matthias Fresacher, (50min B&TL) Congruence Lattices of Finite Twisted Brauer & Temperley-Lieb Monoids-MatthiasFresacher, youtube video (2024).
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
a(n) = (n + 3)/2 if n is odd.
a(n) = (n + 10)/2 if n is even and n >= 4.
a(n) = a(n-2) + 1 for n >= 5.
MATHEMATICA
LinearRecurrence[{1, 1, -1}, {2, 2, 3, 3, 7, 4}, 100] (* Paolo Xausa, Aug 07 2024 *)
PROG
(PARI) a(n)=if(n%2, (n+3)/2, n>2, n/2+5, n/2+2) \\ Charles R Greathouse IV, Aug 07 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Matthias Fresacher, May 23 2024
STATUS
approved