login
A373012
Number of distinct partitions p of n such that max(p) == 1 mod 3.
2
0, 1, 0, 0, 1, 1, 1, 3, 2, 2, 4, 3, 4, 7, 7, 8, 12, 13, 15, 20, 21, 24, 31, 34, 39, 49, 54, 62, 76, 84, 97, 116, 130, 148, 174, 195, 221, 257, 287, 325, 374, 419, 472, 540, 604, 679, 772, 861, 966, 1092, 1218, 1362, 1533, 1706, 1903, 2133, 2368, 2635, 2943, 3263, 3622, 4033, 4463
OFFSET
0,8
FORMULA
G.f.: Sum_{k>=0} x^(3*k+1) * Product_{j=1..3*k} (1+x^j).
A000009(n) = A372893(n) + a(n) + A373013(n).
EXAMPLE
a(7) = 3 counts these partitions: 7, 43, 421.
PROG
(PARI) my(N=70, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, x^(3*k+1)*prod(j=1, 3*k, 1+x^j))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 20 2024
STATUS
approved