login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105404
Indices n of primes p(n), p(n+2) such that p(n)+1 and p(n+2)+1 have the same largest prime factor.
1
1, 2, 3, 5, 7, 8, 22, 23, 259, 3598, 4808, 7715, 8821, 9155, 10765, 29745, 1776197, 2417850, 11568019, 1617124497, 5632000774
OFFSET
1,2
COMMENTS
a(22) > 1.2*10^12, if it exists. - Giovanni Resta, May 14 2016
EXAMPLE
The prime factors of prime(22)+1 = 2, 2, 2, 2, 5;
the prime factors of prime(24)+1 = 2, 3, 3, 5;
and 5 is the common largest prime factor.
MATHEMATICA
t = {0, 3, 2}; Do[ t = {t[[2]], t[[3]], FactorInteger[Prime[n + 2] + 1][[ -1, 1]]}; If[t[[1]] == t[[3]], Print[n]], {n, 20000000}] (* Robert G. Wilson v, Jun 04 2005 *)
PROG
(PARI) /* prime indices such that gd of prime(x)+ k and prime(x+m) + k are equal */ divpm1(n, m, k) = { local(x, l1, l2, v1, v2); for(x=2, n, v1 = ifactor(prime(x)+ k); v2 = ifactor(prime(x+m)+k); l1 = length(v1); l2 = length(v2); if(v1[l1] == v2[l2], print1(x", ") ) ) }
ifactor(n) = /* Vector of the prime factors of n */ { local(f, j, k, flist); flist=[]; f=Vec(factor(n)); for(j=1, length(f[1]), for(k = 1, f[2][j], flist = concat(flist, f[1][j]) ); ); return(flist) }
CROSSREFS
Cf. A105308.
Sequence in context: A352290 A350707 A285282 * A238378 A075012 A067090
KEYWORD
more,nonn
AUTHOR
Cino Hilliard, May 01 2005
EXTENSIONS
a(1), a(17)-(19) from Robert G. Wilson v, Jun 04 2005
a(20), a(21) from Donovan Johnson, Apr 03 2008
STATUS
approved