login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105405
Numbers k such that prime(k)-1 and prime(k+3)-1 have the same largest prime factor.
0
98, 156, 615, 1474, 2313, 66826, 82099, 150425, 188513, 274638, 321482, 523573, 874881, 6872507, 8101145, 22658038, 95011150, 159081273, 381064119, 509331868, 1216774420, 3067461737, 3356013378, 5447285266, 14949553319, 15007703651, 19495563000, 177439269404, 241783229062
OFFSET
1,1
MATHEMATICA
Do[p = Prime[n] - 1; q = Prime[n+3] - 1; l = Select[Divisors[p], PrimeQ]; m = Select[Divisors[q], PrimeQ]; If[Max[l] == Max[m], Print[n]], {n, 1, 10^7}] (* Ryan Propper, Sep 19 2005 *)
PROG
(PARI) \\prime indices such that gd of prime(x)+ k and prime(x+m) + k are equal
divpm1(n, m=3, k=-1) = { local(x, l1, l2, v1, v2); for(x=2, n, v1 = ifactor(prime(x)+ k); v2 = ifactor(prime(x+m)+k); l1 = length(v1); l2 = length(v2); if(v1[l1] == v2[l2], print1(x", ") ) ) }
\\Vector of the prime factors of n
ifactor(n) = { local(f, j, k, flist); flist=[]; f=Vec(factor(n)); for(j=1, length(f[1]), for(k = 1, f[2][j], flist = concat(flist, f[1][j]) ); ); return(flist) }
CROSSREFS
Sequence in context: A344843 A109553 A268253 * A341180 A044430 A044811
KEYWORD
nonn
AUTHOR
Cino Hilliard, May 01 2005
EXTENSIONS
More terms from Ryan Propper, Sep 19 2005
a(16)-a(27) from Donovan Johnson, Apr 03 2008
Name edited and offset changed by Jon E. Schoenfield, Nov 19 2018
a(28)-a(29) from Giovanni Resta, Nov 20 2018
STATUS
approved