login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105403
Numbers n such that prime(n)-1 and prime(n+1)-1 have the same largest prime factor.
6
2, 30, 53, 217
OFFSET
1,1
COMMENTS
The PARI program below is a generalization of this type of sequence. These numbers are rare. Are they finite? Proof?
No more terms between 217 and 3090000. - R. J. Mathar, Feb 14 2008
No more terms < 5760000. - David Wasserman, May 02 2008
No more terms < 11078936. - Otis Tweneboah, Pratik Koirala, Eugene Fiorini, Nathan Fox, Jun 30 2015
No more terms < 50000000 (~40 minutes computation time). - Manfred Scheucher, Jul 25 2015
No more terms < 100000000. Conjecture: sequence is full. - Jon E. Schoenfield, Jul 25 2015
LINKS
FORMULA
{i: A023503(i) = A023503(i+1)}. - R. J. Mathar, Feb 14 2008
EXAMPLE
The prime factorization of prime(217) - 1 = 1327 - 1 = 1326 is 2*3*13*17, and that of prime(218) - 1 = 1361 - 1 = 1360 is 2^4*5*17; each has 17 as its largest factor.
MATHEMATICA
Select[Range@ 1000000, FactorInteger[Prime[#] - 1][[-1, 1]] == FactorInteger[Prime[# + 1] - 1][[-1, 1]] &] (* Michael De Vlieger, Jul 25 2015 *)
PROG
(PARI) \prime indices such that gd of prime(x)+ k and prime(x+m) + k are equal divpm1(n, m, k) = { local(x, l1, l2, v1, v2); for(x=2, n, v1 = ifactor(prime(x)+ k); v2 = ifactor(prime(x+m)+k); l1 = length(v1); l2 = length(v2); if(v1[l1] == v2[l2], print1(x", ") ) ) } ifactor(n) = \Vector of the prime factors of n { local(f, j, k, flist); flist=[]; f=Vec(factor(n)); for(j=1, length(f[1]), for(k = 1, f[2][j], flist = concat(flist, f[1][j]) ); ); return(flist) }
(PARI) gpf(n)=if(n>1, my(f=factor(n)[, 1]); f[#f], 1)
is(n, p=prime(n))=my(q=nextprime(p+1), g=gcd(p-1, q-1)); q\=g; p\=g; forprime(r=2, gpf(g), p/=r^valuation(p, r); q/=r^valuation(q, r)); p==1 && q==1
n=0; forprime(p=2, 1e9, n++; if(is(0, p), print1(n", "))) \\ Charles R Greathouse IV, Aug 27 2015
CROSSREFS
Cf. A023503.
Sequence in context: A184238 A285220 A078208 * A134644 A244379 A189100
KEYWORD
hard,nonn
AUTHOR
Cino Hilliard, May 01 2005
STATUS
approved