login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105406
Indices n of primes p(n), p(n+3) such that p(n)+1 and p(n+3)+1 have the same largest prime factor.
0
29, 53, 92, 126, 204, 281, 333, 489, 573, 816, 1169, 1585, 1885, 13906, 24059, 44421, 48142, 53394, 84043, 474045, 489910, 535841, 2135727, 3095936, 3925702, 4858924, 6618689, 8537111, 58246902, 163424560, 188474341, 193910248, 785107460, 847979055, 6040627719, 7900840637
OFFSET
2,1
COMMENTS
No other term <=210000. - Emeric Deutsch, Feb 13 2006
MAPLE
with(numtheory): a:=proc(n) local a, b: a:=factorset(1+ithprime(n)): b:=factorset(1+ithprime(n+3)): if a[nops(a)]=b[nops(b)] then n else fi end: seq(a(n), n=1..10000); # it takes hours - Emeric Deutsch, Feb 13 2006
PROG
(PARI) \prime indices such that gd of prime(x)+ k and prime(x+m) + k are equal divpm1(n, m, k) = { local(x, l1, l2, v1, v2); for(x=2, n, v1 = ifactor(prime(x)+ k); v2 = ifactor(prime(x+m)+k); l1 = length(v1); l2 = length(v2); if(v1[l1] == v2[l2], print1(x", ") ) ) } ifactor(n) = \Vector of the prime factors of n { local(f, j, k, flist); flist=[]; f=Vec(factor(n)); for(j=1, length(f[1]), for(k = 1, f[2][j], flist = concat(flist, f[1][j]) ); ); return(flist) }
CROSSREFS
Sequence in context: A117328 A274227 A230027 * A124284 A054822 A034847
KEYWORD
nonn
AUTHOR
Cino Hilliard, May 01 2005
EXTENSIONS
One more term from Emeric Deutsch, Feb 13 2006
a(21)-a(37) from Donovan Johnson, Apr 03 2008
STATUS
approved