login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Indices n of primes p(n), p(n+3) such that p(n)+1 and p(n+3)+1 have the same largest prime factor.
0

%I #7 Oct 01 2013 17:58:10

%S 29,53,92,126,204,281,333,489,573,816,1169,1585,1885,13906,24059,

%T 44421,48142,53394,84043,474045,489910,535841,2135727,3095936,3925702,

%U 4858924,6618689,8537111,58246902,163424560,188474341,193910248,785107460,847979055,6040627719,7900840637

%N Indices n of primes p(n), p(n+3) such that p(n)+1 and p(n+3)+1 have the same largest prime factor.

%C No other term <=210000. - _Emeric Deutsch_, Feb 13 2006

%p with(numtheory): a:=proc(n) local a, b: a:=factorset(1+ithprime(n)): b:=factorset(1+ithprime(n+3)): if a[nops(a)]=b[nops(b)] then n else fi end: seq(a(n),n=1..10000); # it takes hours - _Emeric Deutsch_, Feb 13 2006

%o (PARI) \prime indices such that gd of prime(x)+ k and prime(x+m) + k are equal divpm1(n,m,k) = { local(x,l1,l2,v1,v2); for(x=2,n, v1 = ifactor(prime(x)+ k); v2 = ifactor(prime(x+m)+k); l1 = length(v1); l2 = length(v2); if(v1[l1] == v2[l2], print1(x",") ) ) } ifactor(n) = \Vector of the prime factors of n { local(f,j,k,flist); flist=[]; f=Vec(factor(n)); for(j=1,length(f[1]), for(k = 1,f[2][j],flist = concat(flist,f[1][j]) ); ); return(flist) }

%K nonn

%O 2,1

%A _Cino Hilliard_, May 01 2005

%E One more term from _Emeric Deutsch_, Feb 13 2006

%E a(21)-a(37) from _Donovan Johnson_, Apr 03 2008