The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105308 Indices n of primes p(n), p(n+2) such that p(n)-1 and p(n+2)-1 have the same largest prime factor. 1
 4, 6, 11, 45, 1408, 13313, 41752, 142122836, 48792948403 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS These numbers are rare. Are they finite? Proof? a(10) > 1.2*10^12, if it exists. - Giovanni Resta, May 14 2016 LINKS EXAMPLE The prime factors of prime(45) - 1 = 2, 2, 7, 7; the prime factors of prime(47) - 1 = 2, 3, 5, 7; and 7 is the common largest factor. MATHEMATICA t = {0, 0, 0}; Do[ t = {t[], t[], FactorInteger[ Prime[n + 2] - 1][[ -1, 1]]}; If[ t[] == t[], Print[n]], {n, 195000000}] (* Robert G. Wilson v, Jun 04 2005 *) PROG (PARI) /* prime indices such that gd of prime(x)+ k and prime(x+m) + k are equal */ divpm1(n, m, k) = { local(x, l1, l2, v1, v2); for(x=2, n, v1 = ifactor(prime(x)+ k); v2 = ifactor(prime(x+m)+k); l1 = length(v1); l2 = length(v2); if(v1[l1] == v2[l2], print1(x", ") ) ) } ifactor(n) = /* Vector of the prime factors of n*/ { local(f, j, k, flist); flist=[]; f=Vec(factor(n)); for(j=1, length(f), for(k = 1, f[j], flist = concat(flist, f[j]) ); ); return(flist) } CROSSREFS Cf. A105404. Sequence in context: A285994 A290651 A066155 * A116983 A196271 A078426 Adjacent sequences:  A105305 A105306 A105307 * A105309 A105310 A105311 KEYWORD more,nonn AUTHOR Cino Hilliard, May 01 2005 EXTENSIONS a(8) from Robert G. Wilson v, Jun 04 2005 a(9) from Giovanni Resta, May 14 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 13:11 EST 2022. Contains 350538 sequences. (Running on oeis4.)