OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = Sum_{k} A330462(n,k) * k!.
EXAMPLE
The a(1) = 1 through a(5) = 11 sequences of sets:
({1}) ({2}) ({3}) ({4}) ({5})
({1,2}) ({1,3}) ({1,4})
({1},{2}) ({1},{3}) ({2,3})
({2},{1}) ({3},{1}) ({1},{4})
({1},{1,2}) ({2},{3})
({1,2},{1}) ({3},{2})
({4},{1})
({1},{1,3})
({1,2},{2})
({1,3},{1})
({2},{1,2})
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
add(binomial(g(i), j)*b(n-i*j, i-1, p+j), j=0..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..35); # Alois P. Heinz, Feb 13 2024
MATHEMATICA
ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp], {comp, Join@@Permutations/@IntegerPartitions[n]}];
Table[Length[Select[ptnseq[n], UnsameQ@@#&&And@@UnsameQ@@@#&]], {n, 0, 10}]
CROSSREFS
The case of strictly decreasing sums is A279785.
This is the distinct case of A304969.
This is the case of A358906 with strict partitions.
The version for compositions instead of strict partitions is A358907.
The case of twice-partitions is A358914.
A001970 counts multiset partitions of integer partitions.
A055887 counts sequences of partitions.
A063834 counts twice-partitions.
A330462 counts set systems by total sum and length.
A358830 counts twice-partitions with distinct lengths.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 11 2022
STATUS
approved