login
A358913
Number of finite sequences of distinct sets with total sum n.
3
1, 1, 1, 4, 6, 11, 28, 45, 86, 172, 344, 608, 1135, 2206, 4006, 7689, 13748, 25502, 47406, 86838, 157560, 286642, 522089, 941356, 1718622, 3079218, 5525805, 9902996, 17788396, 31742616, 56694704, 100720516, 178468026, 317019140, 560079704, 991061957
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k} A330462(n,k) * k!.
EXAMPLE
The a(1) = 1 through a(5) = 11 sequences of sets:
({1}) ({2}) ({3}) ({4}) ({5})
({1,2}) ({1,3}) ({1,4})
({1},{2}) ({1},{3}) ({2,3})
({2},{1}) ({3},{1}) ({1},{4})
({1},{1,2}) ({2},{3})
({1,2},{1}) ({3},{2})
({4},{1})
({1},{1,3})
({1,2},{2})
({1,3},{1})
({2},{1,2})
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
add(binomial(g(i), j)*b(n-i*j, i-1, p+j), j=0..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..35); # Alois P. Heinz, Feb 13 2024
MATHEMATICA
ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp], {comp, Join@@Permutations/@IntegerPartitions[n]}];
Table[Length[Select[ptnseq[n], UnsameQ@@#&&And@@UnsameQ@@@#&]], {n, 0, 10}]
CROSSREFS
The unordered version is A050342, non-strict A261049.
The case of strictly decreasing sums is A279785.
This is the distinct case of A304969.
The case of distinct sums is A336343, constant sums A279791.
This is the case of A358906 with strict partitions.
The version for compositions instead of strict partitions is A358907.
The case of twice-partitions is A358914.
A001970 counts multiset partitions of integer partitions.
A055887 counts sequences of partitions.
A063834 counts twice-partitions.
A330462 counts set systems by total sum and length.
A358830 counts twice-partitions with distinct lengths.
Sequence in context: A330459 A285994 A290651 * A066155 A105308 A116983
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 11 2022
STATUS
approved