|
|
A296122
|
|
Number of twice-partitions of n with no repeated partitions.
|
|
25
|
|
|
1, 1, 2, 5, 10, 20, 40, 77, 157, 285, 552, 1018, 1921, 3484, 6436, 11622, 21082, 37550, 67681, 119318, 211792, 372003, 653496, 1137185, 1986234, 3429650, 5935970, 10205907, 17537684, 29958671, 51189932, 86967755, 147759421, 249850696, 422123392, 710495901
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) is the number of sequences of distinct integer partitions whose sums are weakly decreasing and add up to n.
|
|
LINKS
|
|
|
EXAMPLE
|
The a(4) = 10 twice-partitions: (4), (31), (22), (211), (1111), (3)(1), (21)(1), (111)(1), (2)(11), (11)(2).
|
|
MAPLE
|
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(j!*
binomial(combinat[numbpart](i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
|
|
MATHEMATICA
|
Table[Length[Join@@Table[Select[Tuples[IntegerPartitions/@p], UnsameQ@@#&], {p, IntegerPartitions[n]}]], {n, 15}]
(* Second program: *)
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[j!*
Binomial[PartitionsP[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
a[n_] := b[n, n];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|