login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A296122 Number of twice-partitions of n with no repeated partitions. 2
1, 1, 2, 5, 10, 20, 40, 77, 157, 285, 552, 1018, 1921, 3484, 6436, 11622, 21082, 37550, 67681, 119318, 211792, 372003, 653496, 1137185, 1986234, 3429650, 5935970, 10205907, 17537684, 29958671, 51189932, 86967755, 147759421, 249850696, 422123392, 710495901 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) is the number of sequences of distinct integer partitions whose sums are weakly decreasing and add up to n.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

EXAMPLE

The a(4) = 10 twice-partitions: (4), (31), (22), (211), (1111), (3)(1), (21)(1), (111)(1), (2)(11), (11)(2).

MAPLE

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(j!*

      binomial(combinat[numbpart](i), j)*b(n-i*j, i-1), j=0..n/i)))

    end:

a:= n-> b(n$2):

seq(a(n), n=0..40);  # Alois P. Heinz, Dec 06 2017

MATHEMATICA

Table[Length[Join@@Table[Select[Tuples[IntegerPartitions/@p], UnsameQ@@#&], {p, IntegerPartitions[n]}]], {n, 15}]

(* Second program: *)

b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[j!*

     Binomial[PartitionsP[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]];

a[n_] := b[n, n];

a /@ Range[0, 40] (* Jean-Fran├žois Alcover, May 19 2021, after Alois P. Heinz *)

CROSSREFS

Cf. A000009, A000041, A047968, A063834, A261049, A273873, A279375, A295279, A296121.

Sequence in context: A068034 A222082 A327287 * A293324 A284904 A084215

Adjacent sequences:  A296119 A296120 A296121 * A296123 A296124 A296125

KEYWORD

nonn

AUTHOR

Gus Wiseman, Dec 05 2017

EXTENSIONS

a(15)-a(34) from Robert G. Wilson v, Dec 06 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 20:42 EDT 2021. Contains 347617 sequences. (Running on oeis4.)