login
A296120
Number of ways to choose a strict factorization of each factor in a strict factorization of n.
6
1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 6, 1, 3, 3, 4, 1, 6, 1, 6, 3, 3, 1, 13, 1, 3, 3, 6, 1, 12, 1, 7, 3, 3, 3, 14, 1, 3, 3, 13, 1, 12, 1, 6, 6, 3, 1, 25, 1, 6, 3, 6, 1, 13, 3, 13, 3, 3, 1, 31, 1, 3, 6, 11, 3, 12, 1, 6, 3, 12, 1, 36, 1, 3, 6, 6, 3, 12, 1, 25, 4, 3
OFFSET
1,6
FORMULA
Dirichlet g.f.: Product_{n > 1}(1 + A045778(n)/n^s).
EXAMPLE
The a(36) = 14 twice-factorizations:
(36), (4*9), (3*12), (2*18), (2*3*6),
(4)*(9), (3)*(12), (3)*(3*4), (3)*(2*6), (2)*(18), (2)*(3*6), (2)*(2*9),
(2)*(3)*(6), (2)*(3)*(2*3).
MATHEMATICA
sfs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[sfs[n/d], Min@@#>d&]], {d, Rest[Divisors[n]]}]];
Table[Sum[Times@@Length/@sfs/@fac, {fac, sfs[n]}], {n, 100}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 05 2017
STATUS
approved