|
|
A254578
|
|
Number of ordered factorizations into distinct factors.
|
|
5
|
|
|
1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 5, 1, 3, 3, 3, 1, 5, 1, 5, 3, 3, 1, 13, 1, 3, 3, 5, 1, 13, 1, 5, 3, 3, 3, 13, 1, 3, 3, 13, 1, 13, 1, 5, 5, 3, 1, 21, 1, 5, 3, 5, 1, 13, 3, 13, 3, 3, 1, 29, 1, 3, 5, 11, 3, 13, 1, 5, 3, 13, 1, 29, 1, 3, 5, 5, 3, 13, 1, 21, 3, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,6
|
|
LINKS
|
|
|
EXAMPLE
|
a(20)=5 because there are 5 ordered factorizations of 20 into distinct factors: 2*10, 4*5, 5*4, 10*2, 20.
|
|
MAPLE
|
with(numtheory):
b:= proc(n, i, p) option remember; `if`(n<=i, (p+1)!, 0)+add(
b(n/d, d-1, p+1), d=select(x->x<=i, divisors(n)minus{1, n}))
end:
a:= n-> b(n$2, 0):
|
|
MATHEMATICA
|
f[n_] := f[n] = Level[Table[Map[Prepend[#, d] &, f[n/d]], {d, Rest[Divisors[n]]}], {2}];
f[1] = {{}};
Map[Length, Map[Select[#, Apply[Unequal, #] &] &, Table[f[n], {n, 1, 60}]]]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|