login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254575
Triangle T(n,k) in which the n-th row encodes how to hang a picture by wrapping rope around n nails using a polynomial number of twists, such that removing one nail causes the picture to fall; n>=1, 1<=k<=A073121(n).
2
1, 1, 2, -1, -2, 1, 2, -1, -2, 3, 2, 1, -2, -1, -3, 1, 2, -1, -2, 3, 4, -3, -4, 2, 1, -2, -1, 4, 3, -4, -3, 1, 2, -1, -2, 3, 2, 1, -2, -1, -3, 4, 5, -4, -5, 3, 1, 2, -1, -2, -3, 2, 1, -2, -1, 5, 4, -5, -4, 1, 2, -1, -2, 3, 2, 1, -2, -1, -3, 4, 5, -4, -5, 6, 5
OFFSET
1,3
COMMENTS
In step k the rope has to be wrapped around nail |T(n,k)| clockwise if T(n,k)>0 and counterclockwise if T(n,k)<0.
1 or (-1) appears A062383(n-1) times in row n.
n or (-n) appears A053644(n) times in row n.
LINKS
E. D. Demaine, M. L. Demaine, Y. N. Minsky, J. S. B. Mitchell, R. L. Rivest, M. Patrascu, Picture-Hanging Puzzles, arXiv:1203.3602 [cs.DS], 2012-2014.
EXAMPLE
Triangle T(n,k) begins:
1;
1, 2, -1, -2;
1, 2, -1, -2, 3, 2, 1, -2, -1, -3;
1, 2, -1, -2, 3, 4, -3, -4, 2, 1, -2, -1, 4, 3, -4, -3;
MAPLE
r:= s-> seq(-s[-k], k=1..nops(s)):
T:= proc(n) option remember; `if`(n=1, 1, (m->
((x, y)-> [x[], y[], r(x), r(y)][])([T(m)],
map(h-> h+sign(h)*m, [T(n-m)])))(iquo(n+1, 2)))
end:
seq(T(n), n=1..7);
MATHEMATICA
r[s_List] := -Reverse[s];
T[1] = {1}; T[n_] := T[n] = Module[{ m = Quotient[n+1, 2]}, Function[{x, y}, {x, y, r[x], r[y]} // Flatten][T[m], Function[h, h + Sign[h]*m] /@ T[n - m]]];
Table[T[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
CROSSREFS
Row sums give A063524.
Sequence in context: A272863 A373352 A112632 * A355402 A275344 A206826
KEYWORD
sign,tabf,look
AUTHOR
Alois P. Heinz, Feb 01 2015
STATUS
approved