The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062383 a(0) = 1: for n>0, a(n) = 2^floor(log_2(n)+1) or a(n) = 2*a(floor(n/2)). 52
 1, 2, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Informally, write down 1 followed by 2^k 2^(k-1) times, for k = 1,2,3,4,... These are the denominators of the van der Corput sequence (see A030109). - N. J. A. Sloane, Dec 01 2019 a(n) is the denominator of the form 2^k needed to make the ratio (2n-1)/2^k lie in the interval [1-2], i.e. such ratios are 1/1, 3/2, 5/4, 7/4, 9/8, 11/8, 13/8, 15/8, 17/16, 19/16, 21/16, ... where the numerators are A005408 (The odd numbers). Let A_n be the upper triangular matrix in the group GL(n,2) that has zero entries below the diagonal and 1 elsewhere. For example for n=4 the matrix is / 1,1,1,1 / 0,1,1,1 / 0,0,1,1 / 0,0,0,1 /. The order of this matrix as an element of GL(n,2) is a(n-1). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 14 2001 A006257(n)/a(n) = (0, 0.1, 0.01, 0.11, 0.001, ...) enumerates all binary fractions in the unit interval [0, 1). - Fredrik Johansson, Aug 14 2006 a(n) = maximum of row n+1 in A240769. - Reinhard Zumkeller, Apr 13 2014 This is the discriminator sequence for the odious numbers. - N. J. A. Sloane, May 10 2016 a(n-1) gives the chromatic number of the n-halved cube graph up to n = 8; larger values are not known as of Nov 2017. - Eric W. Weisstein, Nov 17 2017 LINKS Harry J. Smith, Table of n, a(n) for n = 0..1000 L. K. Arnold, S. J. Benkoski and B. J. McCabe, The discriminator (a simple application of Bertrand's postulate). Amer. Math. Monthly 92 (1985), 275-277. Sajed Haque, Chapter 2.6.1 of Discriminators of Integer Sequences, 2017, See p. 33. S. Haque and J. Shallit, Discriminators and k-regular sequences, arXiv:1605.00092 [cs.DM], 2016. R. Stephan, Some divide-and-conquer sequences ... R. Stephan, Table of generating functions FORMULA a(1) = 1 and a(n+1) = a(n)*ceiling(n/a(n)). - Benoit Cloitre, Aug 17 2002 G.f.: 1/(1-x) * (1 + Sum_{k>=0} 2^k*x^2^k). - Ralf Stephan, Apr 18 2003 a(n) = A142151(2*n)/2 + 1. - Reinhard Zumkeller, Jul 15 2008 log(a(n))/log(2) = A029837(n+1). - Johannes W. Meijer, Jul 06 2009 a(n+1) = a(n) + A099894(n). - Reinhard Zumkeller, Aug 06 2009 a(n) = A264619(n) - A264618(n). - Reinhard Zumkeller, Dec 01 2015 a(n) is the smallest power of 2 > n. - Chai Wah Wu, Nov 04 2016 a(n) = 2^ceiling(log_2(n+1)). - M. F. Hasler, Sep 20 2017 MAPLE [seq(2^(floor_log_2(j)+1), j=0..127)]; or [seq(coerce1st_octave((2*j)+1), j=0..127)]; or [seq(a(j), j=0..127)]; coerce1st_octave := proc(r) option remember; if(r < 1) then coerce1st_octave(2*r); else if(r >= 2) then coerce1st_octave(r/2); else (r); fi; fi; end; A062383 := proc(n)     option remember;     if n = 0 then         1 ;     else         2*procname(floor(n/2));     end if; end proc: A062383 := n -> 1 + Bits:-Iff(n, n): seq(A062383(n), n=0..69); # Peter Luschny, Sep 23 2019 MATHEMATICA a[n_] := a[n] = 2 a[n/2 // Floor]; a = 1; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 04 2016 *) Table[2^Floor[Log2[n] + 1], {n, 0, 20}] (* Eric W. Weisstein, Nov 17 2017 *) 2^Floor[Log2[Range[0, 20]] + 1] (* Eric W. Weisstein, Nov 17 2017 *) PROG (PARI) { a=1; for (n=0, 1000, write("b062383.txt", n, " ", a*=ceil((n + 1)/a)) ) } \\ Harry J. Smith, Aug 06 2009 (PARI) a(n)=1<<(log(2*n+1)\log(2)) \\ Charles R Greathouse IV, Dec 08 2011 (Haskell) import Data.List (transpose) a062383 n = a062383_list !! n a062383_list = 1 : zs where    zs = 2 : (map (* 2) \$ concat \$ transpose [zs, zs]) -- Reinhard Zumkeller, Aug 27 2014, Mar 13 2014 (MAGMA) [2^Floor(Log(2, 2*n+1)): n in [0..70]]; // Bruno Berselli, Mar 04 2016 CROSSREFS Apart from the initial term, A062383[n] = 2* A053644[n]. MASKTRANSi(A062383) seems to give a signed form of A038712. (See identities at A053644). floor_log_2 given in A054429. Equals A003817(n)+1. Cf. A002884. Bisection of A065285. Cf. A076877. Equals for n>=1 the r(n) sequence of A160464. - Johannes W. Meijer, May 24 2009 Equals the r(n) sequence of A162440 for n>=1. - Johannes W. Meijer, Jul 06 2009 Cf. A030109, A264618, A264619. Discriminator of the odious numbers (A000069). - Jeffrey Shallit, May 08 2016 Sequence in context: A290221 A098820 A296613 * A034583 A076347 A207872 Adjacent sequences:  A062380 A062381 A062382 * A062384 A062385 A062386 KEYWORD nonn,frac,easy AUTHOR Antti Karttunen, Jun 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 14:23 EDT 2020. Contains 336323 sequences. (Running on oeis4.)