The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162440 The pg(n) sequence that is associated with the Eta triangle A160464. 8
 2, 16, 144, 4608, 115200, 4147200, 203212800, 26011238400, 2106910310400, 210691031040000, 25493614755840000, 3671080524840960000, 620412608698122240000, 121600871304831959040000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS The EG1 matrix coefficients are defined by EG1[2m-1,1] = 2*eta(2m-1) and the recurrence relation EG1[2m-1,n] = EG1[2m-1,n-1] - EG1[2m-3,n-1]/(n-1)^2 with m = .., -2, -1, 0, 1, 2, ... and n = 1, 2, 3, ... . As usual, eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function. For the EG2 matrix, the even counterpart of the EG1 matrix, see A008955. The coefficients in the columns of the EG1 matrix, for m >= 1 and n >= 2, can be generated with GFE(z;n) = ((-1)^(n-1)*r(n)*CFN1(z,n)*GFE(z;n=1) + ETA(z,n))/pg(n) for n >= 2. The CFN1(z,n) polynomials depend on the central factorial numbers A008955 and the ETA(z,n) are the Eta polynomials which led to the Eta triangle, see for both A160464. The pg(n) sequence can be generated with the first Maple program and the EG1[2m-1,n] matrix coefficients can be generated with the second Maple program. The EG1 matrix is related to the ES1 matrix, see A160464 and the formulas below. REFERENCES Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116.  Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185. LINKS M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812. FORMULA pg(n) = (n-1)!^2*2^floor(log(n-1)/log(2)+1) for n >= 2. r(n) = 2^e(n) = 2^floor(log(n-1)/log(2)+1) for n >= 2. EG1[ -1,n] = 2^(1-2*n)*(2*n-1)!/((n-1)!^2) for n >= 1. GFE(z;n) = sum (EG1[2*m-1,n]*z^(2*m-2), m=1..infinity). GFE(z;n) = (1-z^2/(n-1)^2)*GFE(z;n-1)-EG1[ -1,n-1]/(n-1)^2 for n = >2. with GFE(z;n=1) = 2*log(2)-Psi(z)-Psi(-z)+Psi(z/2)+Psi(-z/2) and Psi(z) is the digamma function. EG1[2m-1,n] = (2*2^(1-2*n)*(2*n-1)!/((n-1)!^2)) * ES1[2m-1,n]. EXAMPLE The first few generating functions GFE(z;n) are: GFE(z;n=2) = ((-1)*2*(z^2 - 1)*GFE(z;n=1) + (-1))/2, GFE(z;n=3) = ((+1)*4*(z^4 - 5*z^2 + 4)*GFE(z;n=1) + (-11 + 2*z^2))/16, GFE(z;n=4) = ((-1)*4*(z^6-14*z^4+49*z^2-36)*GFE(z;n=1) + (-114+29*z^2-2*z^4))/144. MAPLE nmax := 16; seq((n-1)!^2*2^floor(ln(n-1)/ln(2)+1), n=2..nmax); # End program 1 nmax1 := 5; coln := 4; mmax1 := nmax1: for n from 0 to nmax1 do t1(n, 0) := 1 end do: for n from 0 to nmax1 do t1(n, n) := (n!)^2 end do: for n from 1 to nmax1 do for m from 1 to n-1 do t1(n, m) := t1(n-1, m-1)*n^2 + t1(n-1, m) end do: end do: for m from 1 to mmax1 do EG1[1-2*m, 1] := evalf((2^(2*m)-1)* bernoulli(2*m)/(m)) od: EG1[1, 1] := evalf(2*ln(2)): for m from 2 to mmax1 do EG1[2*m-1, 1] := evalf(2*(1-2^(1-(2*m-1))) * Zeta(2*m-1)) od: for m from -mmax1+coln to mmax1 do EG1[2*m-1, coln]:= (-1)^(coln+1)*sum((-1)^k*t1(coln-1, k) * EG1[1-2*coln+2*m+2*k, 1], k=0..coln-1)/(coln-1)!^2 od; # End program 2 (Edited by Johannes W. Meijer, Sep 21 2012) CROSSREFS The ETA(z, n) polynomials and the ES1 matrix lead to the Eta triangle A160464. The CFN1(z, n), the t1(n, m) and the EG2 matrix lead to A008955. The EG1[ -1, n] equal (1/2)*A001803(n-1)/A046161(n-1). The r(n) sequence equals A062383(n) (n>=1). The e(n) sequence equals A029837(n) (n>=1). Cf. A160473 (p(n) sequence). Cf. A162443 (BG1 matrix), A162446 (ZG1 matrix) and A162448 (LG1 matrix). Sequence in context: A300412 A333727 A024915 * A337793 A103885 A262266 Adjacent sequences:  A162437 A162438 A162439 * A162441 A162442 A162443 KEYWORD easy,nonn AUTHOR Johannes W. Meijer, Jul 06 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 13:24 EDT 2020. Contains 337393 sequences. (Running on oeis4.)