login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A162446 Numerators of the column sums of the ZG1 matrix 8
-13, 401, -68323, 2067169, -91473331, 250738892357, -12072244190753, 105796895635531, -29605311573467996893, 9784971385947359480303, -5408317625058335310276319, 2111561851139130085557412009 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,1
COMMENTS
The ZG1 matrix coefficients are defined by ZG1[2m-1,1] = 2*zeta(2m-1) for m = 2, 3, .. , and the recurrence relation ZG1[2m-1,n] = (ZG1[2m-3,n-1] - (n-1)^2*ZG1[2m-1,n-1])/(n*(n-1)) with m = .. , -2, -1, 0, 1, 2, .. and n = 1, 2, 3, .. , under the condition that n <= (m-1). As usual zeta(m) is the Riemann zeta function. For the ZG2 matrix, the even counterpart of the ZG1 matrix, see A008955.
These two formulas enable us to determine the values of the ZG1[2*m-1,n] coefficients, with m all integers and n all positive integers, but not for all. If we choose, somewhat but not entirely arbitrarily, ZG1[1,1] = 2*gamma, with gamma the Euler-Mascheroni constant, we can determine them all.
The coefficients in the columns of the ZG1 matrix, for m >= 1 and n >= 2, can be generated with GFZ(z;n) = (hg(n)*CFN1(z;n)*GFZ(z;n=1) + ZETA(z;n))/pg(n) with pg(n) = 6*(n-1)!* (n)!*A160476(n) and hg(n) = 6*A160476(n). For the CFN1(z;n) and the ZETA(z;n) polynomials see A160474.
The column sums cs(n) = sum(ZG1[2*m-1,n], m = 1 .. infinity), for n >= 2, of the ZG1 matrix can be determined with the first Maple program. In this program we have made use of the remarkable fact that if we take ZGx[2*m-1,n] = 2, for m >= 1, and ZGx[ -1,n] = ZG1[ -1,n] and assume that the recurrence relation remains the same we find that the column sums of this new matrix converge to the same values as the original cs(n).
The ZG1[2*m-1,n] matrix coefficients can be generated with the second Maple program.
The ZG1 matrix is related to the ZS1 matrix, see A160474 and the formulas below.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
FORMULA
a(n) = numer(cs(n)) and denom(cs(n)) = A162447(n).
with cs(n) = sum(ZG1[2*m-1,n], m = 1 .. infinity) for n >= 2.
GFZ(z;n) = sum( ZG1[2*m-1,n]*z^(2*m-2),m=1..infinity)
GFZ(z;n) = ZG1[ -1,n-1]/(n*(n-1))+(z^2-(n-1)^2)*GFZ(z;n-1)/(n*(n-1)) for n >= 2 with GFZ(z;n=1) = -Psi(1+z) - Psi(1-z).
ZG1[ -1,n] = binomial(2*n,n)*Omega[n] = A000984(n)*A002195(n)/A002196(n).
ZG1[2*m-1,n] = b(n)*ZS1[2*m-1,n] with b(n) = binomial(2*n,n)/2^(2*n-1) for n >= 1.
EXAMPLE
The first few generating functions GFZ(z;n) are:
GFZ(z;2) = (6*(1*z^2-1)*GFZ(z;1) + (-1))/12
GFZ(z;3) = (60*(z^4-5*z^2+4)*GFZ(z;1) + (51-10*z^2))/720
GFZ(z;4) = (1260*(z^6-14*z^4+49*z^2-36)*GFZ(z;1) + (-10594+2961*z^2-210*z^4))/181440
MAPLE
nmax := 13; mmax := nmax: with(combinat): cfn1 := proc(n, k): sum((-1)^j1*stirling1(n+1, n+1-k+j1)*stirling1(n+1, n+1-k-j1), j1=-k..k) end proc: Omega(0):=1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! od: for n from 1 to nmax do ZG1[ -1, n] := binomial(2*n, n)*Omega(n) od: for n from 1 to nmax do ZGx[ -1, n] := ZG1[ -1, n] od: for m from 1 to mmax do ZGx[2*m-1, 1] := 2 od: for n from 2 to nmax do for m from 1 to mmax do ZGx[2*m-1, n] := (((ZGx[2*m-3, n-1]-(n-1)^2*ZGx[2*m-1, n-1])/(n*(n-1)))) od; s(n) := 0: for m from 1 to mmax do s(n) := s(n) + ZGx[2*m-1, n] od: od: seq(s(n), n=2..nmax);
# End program 1
nmax1 := 5; ncol := 3; Digits := 20: mmax1 := nmax1: with(combinat): cfn1 := proc(n, k): sum((-1)^j1*stirling1(n+1, n+1-k+j1)*stirling1(n+1, n+1-k-j1), j1=-k..k) end proc: ZG1[1, 1] := evalf(2*gamma): for m from 1 to mmax1 do ZG1[1-2*m, 1] := -bernoulli(2*m)/m od: for m from 2 to mmax1 do ZG1[2*m-1, 1] := evalf(2*Zeta(2*m-1)) od: for n from 1 to nmax1 do for m from -mmax1 to mmax1 do ZG1[2*m-1, n] := sum((-1)^(k1+1)*cfn1(n-1, k1-1)*ZG1[2*m-(2*n-2*k1+1), 1] /((n-1)!*(n)!), k1=1..n) od; od; for m from -mmax1+ncol to mmax1 do ZG1[2*m-1, ncol] := ZG1[2*m-1, ncol] od;
# End program 2
# Maple programs edited by Johannes W. Meijer, Sep 25 2012
CROSSREFS
See A162447 for the denominators of the column sums.
The pg(n) and hg(n) sequences lead to A160476.
The ZG1[ -1, n] coefficients lead to A000984, A002195 and A002196.
The ZETA(z, n) polynomials and the ZS1 matrix lead to the Zeta triangle A160474.
The CFN1(z, n), the cfn1(n, k) and the ZG2 matrix lead to A008955.
The b(n) sequence equals A001790(n)/ A120777(n-1) for n >= 1.
Cf. A001620 (gamma) and A010790 (n!*(n+1)!).
Cf. A162440 (EG1 matrix), A162443 (BG1 matrix) and A162448 (LG1 matrix)
Sequence in context: A171196 A286189 A280553 * A284824 A075672 A069876
KEYWORD
easy,frac,sign
AUTHOR
Johannes W. Meijer, Jul 06 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 06:58 EDT 2024. Contains 371906 sequences. (Running on oeis4.)