|
|
A162445
|
|
A sequence related to the Beta function
|
|
1
|
|
|
1, 8, 384, 46080, 2064384, 3715891200, 392398110720, 1428329123020800, 274239191619993600, 1678343852714360832000, 102043306245033138585600, 4714400748520531002654720000, 160144566965128191597871104000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
We define F(z) = Beta(1/2-z/2,1/2+z/2)/Beta(1/2,1/2) = 1/sin(Pi*(1+z)/2) with Beta(z,w) the Beta function. See A008956 for a closely related function.
For the Taylor series expansion of F(z) we can write F(z) = sum(b(n)*(Pi*z)^(2*n)/a(n), n=0..infinity) with b(n) = A046976(n) and a(n) the sequence given above.
We can also write F(z) = sum(c(n)*(Pi*z)^(2*n)/d(n), n=0..infinity) with c(n) = A000364(n) and d(n) = A067624(n).
If p(n) is the exponent of the prime factor 2 in a(n) than p(n) = A120738(n) and 2^p(n) = A061549(n) = abs((4*n)!!/A117972(n)).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = denom(euler(2*n)/(4*n)!!)
|
|
MATHEMATICA
|
Denominator[Table[EulerE[2n]/(4n)!!, {n, 0, 20}]] (* Harvey P. Dale, Jun 23 2013 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,frac,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|