OFFSET
1,2
COMMENTS
A176003 is a subsequence. - Peter Luschny, Sep 12 2012
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = Sum_{d|n} phi(d)*tau(d^2).
Multiplicative with a(p^e) = 1 + Sum_{k=1..e} (2k+1)(p^k-p^{k-1}) = ((2e+1)p^(e+1) - (2e+3)p^e+2)/(p-1). - Mitch Harris, May 24 2005
a(n) = Sum_{c|n,d|n} phi(lcm(c,d)). - Peter Luschny, Sep 10 2012
a(n) = Sum_{k=1..n} tau( (n/gcd(k,n))^2 ). - Seiichi Manyama, May 19 2024
EXAMPLE
Let p be a prime then a(p) = phi(1)*tau(1)+phi(p)*tau(p^2) = 1+(p-1)*3 = 3*p-2. - Peter Luschny, Sep 12 2012
MAPLE
with(numtheory):
a:= n-> add(phi(d)*tau(d^2), d=divisors(n)):
seq(a(n), n=1..60); # Alois P. Heinz, Sep 12 2012
MATHEMATICA
a[n_] := DivisorSum[n, EulerPhi[#] DivisorSigma[0, #^2]&]; Array[a, 60] (* Jean-François Alcover, Dec 05 2015 *)
f[p_, e_] := ((2*e+1)*p^(e+1) - (2*e+3)*p^e + 2)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 30 2023 *)
PROG
(Sage)
def A062380(n) :
d = divisors(n); cp = cartesian_product([d, d])
return reduce(lambda x, y: x+y, map(euler_phi, map(lcm, cp)))
[A062380(n) for n in (1..57)] # Peter Luschny, Sep 10 2012
(PARI) a(n)=sumdiv(n, i, eulerphi(i)*sumdiv(n, j, eulerphi(j)/eulerphi(gcd(i, j)))) \\ Charles R Greathouse IV, Sep 12 2012
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Vladeta Jovovic, Jul 07 2001
STATUS
approved